, Volume 165, Issue 1, pp 237–248 | Cite as

Environmental controls on the phenology of moths: predicting plasticity and constraint under climate change

  • Anu ValtonenEmail author
  • Matthew P. Ayres
  • Heikki Roininen
  • Juha Pöyry
  • Reima Leinonen
Global change ecology


Ecological systems have naturally high interannual variance in phenology. Component species have presumably evolved to maintain appropriate phenologies under historical climates, but cases of inappropriate phenology can be expected with climate change. Understanding controls on phenology permits predictions of ecological responses to climate change. We studied phenological control systems in Lepidoptera by analyzing flight times recorded at a network of sites in Finland. We evaluated the strength and form of controls from temperature and photoperiod, and tested for geographic variation within species. Temperature controls on phenology were evident in 51% of 112 study species and for a third of those thermal controls appear to be modified by photoperiodic cues. For 24% of the total, photoperiod by itself emerged as the most likely control system. Species with thermal control alone should be most immediately responsive in phenology to climate warming, but variably so depending upon the minimum temperature at which appreciable development occurs and the thermal responsiveness of development rate. Photoperiodic modification of thermal controls constrains phenotypic responses in phenologies to climate change, but can evolve to permit local adaptation. Our results suggest that climate change will alter the phenological structure of the Finnish Lepidoptera community in ways that are predictable with knowledge of the proximate physiological controls. Understanding how phenological controls in Lepidoptera compare to that of their host plants and enemies could permit general inferences regarding climatic effects on mid- to high-latitude ecosystems.


Lepidoptera Light-trap Photoperiod Temperature Thermal sum 



We thank A. Shapiro and three anonymous reviewers for insightful comments on the manuscript. We are grateful to Liisa Tuominen-Roto and Guy Söderman (Finnish Environment Institute) for their help with the Nocturna database, Matti Rousi and Hanni Sikanen for allowing us to use the hourly temperature data from Punkaharju and the voluntary Finnish lepidopterists for maintaining the traps and identifying the moth samples. The study was funded by Emil Aaltonen foundation (A.V.).

Supplementary material

442_2010_1789_MOESM1_ESM.doc (146 kb)
Supplementary material 1 (DOC 145 kb)


  1. Altermatt F (2010) Climatic warming increases voltinism in European butterflies and moths. Proc R Soc Lond B 277:1281–1287. doi: 10.1098/rspb.2009.1910 CrossRefGoogle Scholar
  2. Anderson DR (2007) Model based inference in the life sciences. A primer on evidence. Springer, New YorkGoogle Scholar
  3. Ayres MP, Scriber JM (1994) Local adaptation to regional climates in Papilio canadensis (Lepidoptera: Papilionidae). Ecol Monogr 64:465–482CrossRefGoogle Scholar
  4. Berthold P, Terrill SB (1991) Recent advances in studies of bird migration. Annu Rev Ecol Syst 22:357–378. doi: 10.1146/ CrossRefGoogle Scholar
  5. Both C, van Asch M, Bijlsma RG, van den Burg AB, Visser ME (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J Anim Ecol 78:73–83. doi: 10.1111/j.1365-2656.2008.01458.x CrossRefPubMedGoogle Scholar
  6. Bradshaw WE, Holzapfel CM (2010) Light, time, and the physiology of biotic response to rapid climate change in animals. Annu Rev Physiol 72:147–166. doi: 10.1146/annurev-physiol-021909-135837 CrossRefPubMedGoogle Scholar
  7. Bryant SR, Thomas CD, Bale JS (2000) Thermal ecology of gregarious and solitary nettle-feeding nymphalid butterfly larvae. Oecologia 122:1–10. doi: 10.1007/PL00008825 CrossRefGoogle Scholar
  8. Cesaraccio C, Spano D, Duce P, Snyder RL (2001) An improved model for determining degree–day values from daily temperature data. Int J Biometeorol 45:161–169. doi: 10.1007/s004840100104 CrossRefPubMedGoogle Scholar
  9. Chown SL, Terblanche JS (2007) Physiological diversity in insects: ecological and evolutionary contexts. Adv Insect Physiol 33:50–152. doi: 10.1016/S0065-2806(06)33002-0 CrossRefGoogle Scholar
  10. Chuine I (2000) A unified model for budburst of trees. J Theor Biol 207:337–347. doi: 10.1006/jtbi.2000.2178 CrossRefPubMedGoogle Scholar
  11. Dambroski HR, Feder JL (2007) Host plant and latitude-related diapause variation in Rhagoletis pomonella: a test for multifaceted life-history adaptation on different stages of diapause development. J Evol Biol 20:2101–2112. doi: 10.1111/j.1420-9101.2007.01435.x CrossRefPubMedGoogle Scholar
  12. Danilevskii AS (1965) Photoperiodism and seasonal development of insects. Oliver & Boyd, EdinburghGoogle Scholar
  13. Danks HV (1987) Insect dormancy: an ecological perspective. Biological Survey of Canada. National Museum of Natural Sciences, OttawaGoogle Scholar
  14. Davidson J (1944) On the relationship between temperature and rate of development of insects at constant temperatures. J Anim Ecol 13:26–38CrossRefGoogle Scholar
  15. Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47:93–122. doi: 10.1146/annurev.ento.47.091201.145137 CrossRefPubMedGoogle Scholar
  16. Egerton FN (2006) A history of the ecological sciences. Part 21: Réaumur and his history of insects. Bull Ecol Soc Am 87:212–224. doi: 10.1890/0012-9623(2006)87[212:AHOTES]2.0.CO;2 CrossRefGoogle Scholar
  17. Environment Data Centre (1994) Moth monitoring scheme. A handbook for field work and data reporting. National Board of Waters and the Environment, HelsinkiGoogle Scholar
  18. Feeny P (1970) Seasonal changes in oak leaf tannis and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565–581CrossRefGoogle Scholar
  19. Finnish Meteorological Institute (2009) Kevättilastot [spring statistics]. [accessed November 2009]
  20. Forister ML, Shapiro AM (2003) Climatic trends and advancing spring flight of butterflies in lowland California. Glob Change Biol 9:1130–1135. doi: 10.1046/j.1365-2486.2003.00643.x CrossRefGoogle Scholar
  21. Gillooly JF, Charnov EL, West GB, Savage VM, Brown JH (2002) Effects of size and temperature on developmental time. Nature 417:70–73. doi: 10.1038/417070a CrossRefPubMedGoogle Scholar
  22. Gotthard K (2008) Adaptive growth decisions in butterflies. Bioscience 58:222–230. doi: 10.1641/B580308 CrossRefGoogle Scholar
  23. Graham LP, Chen D, Christensen OB, Kjellström E, Krysanova V, Meier HEM, Radziejewski M, Räisänen J, Rockel B, Ruosteenoja K (2008) Projections of future anthropogenic climate change. In: The BACC Author Team (eds) Assessment of climate change for the Baltic Sea Basin. Springer, Berlin, pp 133–219Google Scholar
  24. Gray DR, Ravlin FW, Braine JA (2001) Diapause in the gypsy moth: a model of inhibition and development. J Insect Physiol 47:173–184. doi: 10.1016/S0022-1910(00)00103-7 CrossRefPubMedGoogle Scholar
  25. Hagan JM, Lloyd-Evans TL, Atwood JL (1991) The relationship between latitude and the timing of spring migration of North American landbirds. Ornis Scand 22:129–136CrossRefGoogle Scholar
  26. Hänninen H (1995) Effects of climatic change on trees from cool and temperate regions: an ecophysiological approach to modelling of bud burst phenology. Can J Bot 73:183–199CrossRefGoogle Scholar
  27. Hänninen H, Slaney M, Linder S (2007) Dormancy release of Norway spruce under climatic warming: testing ecophysiological models of bud burst with a whole-tree chamber experiment. Tree Physiol 27:291–300. doi: 10.1093/treephys/27.2.291 PubMedGoogle Scholar
  28. Honěk A (1996) Geographical variation in thermal requirements for insect development. Eur J Entomol 93:303–312Google Scholar
  29. Klok CJ, Chown SL (2003) Resistance to temperature extremes in sub-Antarctic weevils: interspecific variation, population differentiation and acclimation. Biol J Linn Soc 78:401–414. doi: 10.1046/j.1095-8312.2003.00154.x CrossRefGoogle Scholar
  30. Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462. doi: 10.1126/science.1186473 CrossRefPubMedGoogle Scholar
  31. Kuchlein JH, Ellis WN (1997) Climate-induced changes in the microlepidoptera fauna of the Netherlands and the implications for nature conservation. J Insect Conserv 1:73–80CrossRefGoogle Scholar
  32. Kullberg J, Albrecht A, Kaila L, Varis V (2009) Checklist of Finnish Lepidoptera—an updated version. [accessed June 2009]
  33. Leather SR, Walters KFA, Bale JS (1993) The ecology of insect overwintering. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  34. Linderholm HW, Walther A, Chen D (2008) Twentieth-century trends in the thermal growing season in the Greater Baltic Area. Clim Change 87:405–419. doi: 10.1007/s10584-007-9327-3 CrossRefGoogle Scholar
  35. Linkosalo T, Carter TR, Häkkinen R, Hari P (2000) Predicting spring phenology and frost damage risk of Betula spp. under climatic warming: a comparison of two models. Tree Physiol 20:1175–1182. doi: 10.1093/treephys/20.17.1175 PubMedGoogle Scholar
  36. Linkosalo T, Häkkinen R, Hänninen H (2006) Models of the spring phenology of boreal and temperate trees: is there something missing? Tree Physiol 26:1165–1172. doi: 10.1093/treephys/26.9.1165 PubMedGoogle Scholar
  37. Linkosalo T, Lappalainen HK, Hari P (2008) A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Physiol 28:1873–1882. doi: 10.1093/treephys/28.12.1873 PubMedGoogle Scholar
  38. Logan JA, Wollkind DJ, Hoyt SC, Tanigoshi LK (1976) Analytic model for description of temperature-dependent rate phenomena in arthropods. Environ Entomol 5:1133–1140Google Scholar
  39. Marra PP, Francis CM, Mulvihill RS, Moore FR (2005) The influence of climate on the timing and rate of spring bird migration. Oecologia 142:307–315. doi: 10.1007/s00442-004-1725-x CrossRefPubMedGoogle Scholar
  40. Masaki S (1980) Summer diapause. Annu Rev Entomol 25:1–25CrossRefGoogle Scholar
  41. Migliavacca M, Cremonese E, Colombo R, Busetto L, Galvagno M, Ganis L, Meroni M, Pari E, Rossini M, Siniscalco C, Morra di Cella U (2008) European larch phenology in the Alps: can we grasp the role of ecological factors by combining field observations and inverse modelling? Int J Biometeorol 52:587–605. doi: 10.1007/s00484-008-0152-9 CrossRefPubMedGoogle Scholar
  42. Morin X, Lechowicz MJ, Augspurger C, O’Keefe J, Viner D, Chuine I (2009) Leaf phenology in 22 North American tree species during the 21st century. Glob Change Biol 15:961–975. doi: 10.1111/j.1365-2486.2008.01735.x CrossRefGoogle Scholar
  43. Myking T, Heide OM (1995) Dormancy release and chilling requirements of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiol 15:697–704. doi: 10.1093/treephys/15.11.697 PubMedGoogle Scholar
  44. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702. doi: 10.1038/386698a0 CrossRefGoogle Scholar
  45. Nylin S, Gotthard K (1998) Plasticity in life-history traits. Annu Rev Entomol 43:63–83CrossRefPubMedGoogle Scholar
  46. Olsen JE, Junttila O, Moritz T (1997) Long-day induced bud break in Salix pentandra is associated with transiently elevated levels of GA(1) and gradual increase in indole-3-acetic acid. Plant Cell Physiol 38:536–540Google Scholar
  47. Perrins CM, McCleery RH (1989) Laying dates and clutch size in the Great tit. Wilson Bull 101:236–253Google Scholar
  48. Peterson NA, Nilssen AC (1996) Nonlinear temperature-dependent development of autumnal moth pupae, Epirrita autumnata (Lepidoptera: Geometridae). Environ Entomol 25:147–154Google Scholar
  49. Pimentel C, Ferreira C, Nilsson J-Å (2010) Latitudinal gradients and the shaping of life-history traits in a gregarious caterpillar. Biol J Linn Soc 100:224–236. doi: 10.1111/j.1095-8312.2010.01413.x CrossRefGoogle Scholar
  50. Post E, Forchhammer MC (2008) Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos Trans R Soc Lond B 363:2369–2375. doi: 10.1098/rstb.2007.2207 CrossRefGoogle Scholar
  51. Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Hoye TT, Ims RA, Jeppesen E, Klein DR, Madsen J, McGuire AD, Rysgaard S, Schindler DE, Stirling I, Tamstorf MP, Tyler NJC, van der Wal R, Welker J, Wookey PA, Schmidt NM, Aastrup P (2009) Ecological dynamics across the arctic associated with recent climate change. Science 325:1355–1358. doi: 10.1126/science.1173113 CrossRefPubMedGoogle Scholar
  52. Pritchard G, Harder LD, Mutch RA (1996) Development of aquatic insect eggs in relation to temperature and strategies for dealing with different thermal environments. Biol J Linn Soc 58:221–244CrossRefGoogle Scholar
  53. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria.
  54. Rathcke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Annu Rev Ecol Evol Syst 16:179–214CrossRefGoogle Scholar
  55. Ruel JJ, Ayres MP (1999) Jensen’s inequality predicts effects of environmental variation. Trends Ecol Evol 14:361–366CrossRefPubMedGoogle Scholar
  56. Scoble MJ (1995) The Lepidoptera: form, function and diversity. Oxford University Press, OxfordGoogle Scholar
  57. Scriber JM (1981) Sequential diets, metabolic costs, and growth of Spodoptera eridania (Lepidoptera: Noctuidae) feeding upon dill, lima bean, and cabbage. Oecologia 51:175–180CrossRefGoogle Scholar
  58. Sharpe PJH, DeMichele DW (1977) Reaction kinetics of poikilotherm development. J Theor Biol 64:649–670CrossRefPubMedGoogle Scholar
  59. Stamp NE, Casey TM (eds) (1993) Caterpillars: ecological and evolutionary constraints on foraging. Chapman & Hall, New YorkGoogle Scholar
  60. Steltzer H, Post E (2009) Seasons and life cycles. Science 324:886–887. doi: 10.1126/science.1171542 CrossRefPubMedGoogle Scholar
  61. Tammaru T, Tanhuanpää M, Ruohomäki K, Vanatoa A (2001) Autumnal moth—why autumnal? Ecol Entomol 26:646–654. doi: 10.1046/j.1365-2311.2001.00363.x CrossRefGoogle Scholar
  62. Tanhuanpää M, Ruohomäki K, Kaitaniemi P, Klemola T (1999) Different impact of pupal predation on populations of Epirrita autumnata (Lepidoptera; Geometridae) within and outside the outbreak range. J Anim Ecol 68:562–570CrossRefGoogle Scholar
  63. Tauber CA, Tauber MJ (1981) Insect seasonal cycles: genetics and evolution. Annu Rev Ecol Evol S 12:281–308CrossRefGoogle Scholar
  64. Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptations of insects. Oxford University Press, New YorkGoogle Scholar
  65. Ti X, Tuzuki N, Tani N, Morigami E, Isobe M, Kai H (2004) Demarcation of diapause development by cold and its relation to time-interval activation of TIME-ATPase in eggs of the silkworm, Bombyx mori. J Insect Physiol 50:1053–1064. doi: 10.1016/j.jinsphys.2004.09.007 CrossRefPubMedGoogle Scholar
  66. Trudgill DL, Honěk A, Li D, van Straalen NM (2005) Thermal time—concepts and utility. Ann Appl Biol 146:1–14. doi: 10.1111/j.1744-7348.2005.04088.x CrossRefGoogle Scholar
  67. van Asch M, Visser ME (2007) Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu Rev Entomol 52:37–55. doi: 10.1146/annurev.ento.52.110405.091418 CrossRefPubMedGoogle Scholar
  68. van der Have TM (2002) A proximate model for thermal tolerance in ectotherms. Oikos 98:141–155CrossRefGoogle Scholar
  69. Visser ME, Holleman LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc R Soc Lond B 268:289–294. doi: 10.1098/rspb.2000.1363 CrossRefGoogle Scholar
  70. Willis CG, Ruhfel B, Primack RB, Miller-Rushing AJ, Davis CC (2008) Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proc Natl Acad Sci USA 150:17029–17033. doi: 10.1073/pnas.0806446105 CrossRefGoogle Scholar
  71. Worner S (1992) Performance of phenological models under variable temperature regimes: consequences of the Kaufmann or rate summation effect. Environ Entomol 21:689–699Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Anu Valtonen
    • 1
    Email author
  • Matthew P. Ayres
    • 2
  • Heikki Roininen
    • 1
  • Juha Pöyry
    • 3
  • Reima Leinonen
    • 4
  1. 1.Department of BiologyUniversity of Eastern FinlandJoensuuFinland
  2. 2.Department of Biological SciencesDartmouth CollegeHanoverUSA
  3. 3.Research Programme of BiodiversityFinnish Environment InstituteHelsinkiFinland
  4. 4.NakertajaFinland

Personalised recommendations