Oecologia

, Volume 164, Issue 1, pp 13–23 | Cite as

Geographic and temporal correlations of mammalian size reconsidered: a resource rule

Physiological ecology - Original Paper

Abstract

The tendency of mammals to increase or decrease body size with respect to geography or time depends on the abundance, availability, and size of resources. This dependency accounts for a change in mass with respect to geography, including latitude (Bergmann’s rule), a desert existence, and life on oceanic islands (the island rule), as well as in a seasonal anticipation of winter (Dehnel’s phenomenon) and a tendency for some lineages to increase in mass through time (Cope’s rule). Such a generalized pattern could be called the “resource rule,” reflecting the controlling effect of resource availability on body mass and energy expenditure. The correlation of mammalian size with geography and time reflects the impact of temperature, rainfall, and season on primary production, as well as the necessity in the case of some species to share resources with competitors. The inability of the constituent “rules” to account for all size trends often results from unique patterns of resource availability.

Keywords

Bergmann’s rule Character displacement Cope’s rule Dehnel’s phenomenon Desert existence Island rule Primary production Resource abundance 

References

  1. Ackerman BB, Lindzey FG, Hemker TP (1984) Cougar food habits in southern Utah. J Wildl Manag 48:147–155CrossRefGoogle Scholar
  2. Aitchison CW (1987) Review of winter trophic relations of soricine shrews. Mamm Rev 17:1–24CrossRefGoogle Scholar
  3. Alder GH, Levins R (1994) The island syndrome in rodent populations. Q Rev Biol 69:473–490CrossRefGoogle Scholar
  4. Alroy J (1998) Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731–734PubMedCrossRefGoogle Scholar
  5. Ashton KG, Tracy MC, de Queiroz A (2000) Is Bergmann’s rule valid for mammals? Am Nat 156:390–415CrossRefGoogle Scholar
  6. Auffenberg W (1981) The behavioral ecology of the Komodo monitor. University Press of Florida, GainesvilleGoogle Scholar
  7. Bergmann C (1847) Ueber die Verhältnisse der Wärmeökonomie der Tiere zu ihrer Grösse. Gött Stud 3:595–708Google Scholar
  8. Blackburn TM, Hawkins BA (2004) Bergmann’s rule and the mammal fauna of northern North America. Ecography 27:715–724CrossRefGoogle Scholar
  9. Blackburn TM, Ruggiero A (2001) Latitude, elevation and body mass variation in Andean passerine birds. Glob Ecol Biogeogr 10:245–259CrossRefGoogle Scholar
  10. Bradley WG, Miller JS, Yousef MK (1974) Thermoregulatory patterns in pocket gophers: desert and mountain. Physiol Zool 47:172–179CrossRefGoogle Scholar
  11. Brisbin ILJ, Geiger RA, Graves HB, Pinder JE III, Sweeney JM, Sweeney JR (1977) Morphological characterizations of 2 populations of feral swine. Acta Theriol 22:75–85CrossRefGoogle Scholar
  12. Brown JH, Sibly RM (2006) Life-history evolution under a production constraint. Proc Nat Acad Sci USA 103:17595–17599PubMedCentralPubMedCrossRefGoogle Scholar
  13. Brown JH, Marquet PA, Taper ML (1993) Evolution of body size: consequences of an energetic definition of fitness. Am Nat 142:573–584PubMedCrossRefGoogle Scholar
  14. Butler RJ, Goswami A (2008) Body size evolution in Mesozoic birds: little evidence for Cope’s rule. J Evol Biol 21:1673–1682PubMedCrossRefGoogle Scholar
  15. Churchfield S, Nesterenko VA, Sharts EA (1999) Food niche overlap and ecological separation amongst six species of coexisting forest shrews (Insectivora: Soricidae) in the Russian Far East. J Zool Lond 248:349–359CrossRefGoogle Scholar
  16. Clauset A, Schwab DJ, Redner S (2009) How many species have a mass M? Am Nat 173:256–263PubMedCrossRefGoogle Scholar
  17. Cope ED (ed) (1887) The origin of the fittest. Appleton, New YorkGoogle Scholar
  18. Cope ED (ed) (1896) The primary factors of organic evolution. Open Court, New YorkGoogle Scholar
  19. de Queiroz A, Ashton KG (2004) The phylogeny of a species-level tendency: species heritability and deep origins of Bergmann’s rule in tetrapods. Evolution 58:1674–1684PubMedCrossRefGoogle Scholar
  20. Dehnel A (1949) Studies on the genus Sorex L. Ann Univ Mariae Curie Sklodowska Section C Biol 4:17–102Google Scholar
  21. Diniz-Filho JAF, Bini LM, Rodríguez MA, Rangel TFLVB, Hawkins BA (2007) Seeing the forest for the trees: partitioning ecological and phylogenetic components of Bergmann’s rule in European Carnivora. Ecography 30:598–608CrossRefGoogle Scholar
  22. Dunbrack RL, Ramsay MA (1993) The allometry of mammalian adaptations to seasonal environments: a critique of the fasting endurance hypothesis. Oikos 66:336–342CrossRefGoogle Scholar
  23. Erlinge S (1987) Why do European stoats Mustela erminea not follow Bergmann’s rule? Holarctic Ecol 10:33–39Google Scholar
  24. Foster JB (1964) Evolution of mammals on islands. Nature 202:234–235CrossRefGoogle Scholar
  25. Freckleton RP, Harvey PH, Pagel M (2003) Bergmann’s rule and body size in mammals. Am Nat 161:821–825PubMedCrossRefGoogle Scholar
  26. Ganzhorn JU, Malcomber S, Andrianantoanina O, Goodman SM (1997) Habitat characteristics and lemur species richness in Madagascar. Biotropica 29:331–343CrossRefGoogle Scholar
  27. Geist V (1987) Bergmann’s rule is invalid. Can J Zool 65:1035–1038CrossRefGoogle Scholar
  28. Golightly RT Jr, Ohmart RD (1983) Metabolism and body temperature of two desert canids: coyotes and kit foxes. J Mammal 64:624–635CrossRefGoogle Scholar
  29. Goltsman M, Kruchenkova EP, Sergeev S, Macdonald DW (2005) “Island syndrome” in a population of Arctic foxes (Alopex lagopus) from Mednyi Island. J Zool Lond 267:405–418Google Scholar
  30. Gould SJ (1997) Cope’s rule as psychological artefact. Nature 385:199–200CrossRefGoogle Scholar
  31. Grant PR (1972) Convergent and divergent character displacement. Biol J Linn Soc 4:39–68CrossRefGoogle Scholar
  32. Guthrie RD (1984) Mosaics, allelochemics and nutrients. An ecological theory of late Pleistocene megafaunal extinctions. In: Martin PS, Klein S (eds) Quartenary extinctions. University of Arizona Press, Tucson, pp 254–298Google Scholar
  33. Hanski I, Kaikusalo A (1989) Distribution and habitat selection of shrews in Finland. Ann Zool Fenn 26:339–348Google Scholar
  34. Heaney LR (1978) Island area and body size of insular mammals: evidence from the tri-colored squirrel (Callosciurus prevosti) of Southeast Asia. Evolution 32:29–44CrossRefGoogle Scholar
  35. Hilderbrand GV, Schwartz CC, Robbins CT, Jacoby ME, Hanley TA, Arthur SM, Servheen C (1999) The importance of meat, particularly salmon, to body size, population productivity and conservation of North American brown bears. Can J Zool 77:132–138CrossRefGoogle Scholar
  36. Huston MA, Wolverton S (2009) The global distribution of net primary productivity: resolving the paradox. Ecol Monogr 79:343–377CrossRefGoogle Scholar
  37. Iriarte JA, Franklin WL, Johnston WE, Redford KH (1990) Biogeographic variation of food habits and body size of the American puma. Oecologia 85:185–190CrossRefGoogle Scholar
  38. James FC (1970) Geographic size variation in birds and its relationship to climate. Ecology 51:365–389CrossRefGoogle Scholar
  39. Jessop TS, Madsen T, Summer J, Rudiharto H, Philips JA, Ciofi C (2006) Maximum body size among insular Komodo dragon populations covaries with large prey density. Oikos 112:422–429CrossRefGoogle Scholar
  40. Kay RF, Madden RH, Van Schaik C, Higdon D (1997) Primate species richness is determined by plant productivity: implications for conservation. Proc Nat Acad Sci USA 94:13023–13027Google Scholar
  41. Kendeigh SC (1969) Tolerance of cold and Bergmann’s rule. Auk 86:13–25CrossRefGoogle Scholar
  42. Kingsolver JG, Pfennig DW (2004) Individual level selection as a cause of Cope’s rule of phyletic increase. Evolution 58:1608–1612PubMedCrossRefGoogle Scholar
  43. Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353CrossRefGoogle Scholar
  44. Köhler M, Moyà-Solà S (2004) Reduction of brain and sense organs in the fossil insular bovid Myotragus. Brain Behav Evol 63:125–140PubMedCrossRefGoogle Scholar
  45. Köhler M, Moyà-Solà S (2009) Slow life history and physiological plasticity: survival strategies of a large mammal in a resource-poor environment. Proc Nat Acad Sci USA 106:20354–20358PubMedCentralPubMedCrossRefGoogle Scholar
  46. Kojola I, Laitala H-M (2001) Body size variation of brown bear in Finland. Ann Zool Fenn 38:173–178Google Scholar
  47. Kolb HH (1978) Variation in the size of foxes in Scotland. Biol J Linn Soc 10:291–304CrossRefGoogle Scholar
  48. Lahann P, Schmid J, Ganzhorn JL (2006) Geographical variations in populations of Microcebus murinus in Madagascar: resource seasonality or Bergmann’s rule? Intl J Primatol 27:983–999CrossRefGoogle Scholar
  49. Langvatn R, Albon SD (1986) Geographic clines in body weight of Norwegian red deer: a novel explanation of Bergmann’s rule? Holarctic Ecol 9:285–293Google Scholar
  50. Laudré JW, Hernández L (2003) Total energy budget and prey requirements of free-ranging coyotes in the Great Basin of western United States. J Arid Environ 55:675–689CrossRefGoogle Scholar
  51. Lehman SM, Mayor M, Wright PC (2005) Ecogeographic size variations in sifakas: a test of the resource seasonality and resource quality hypothesis. Am J Phys Anthrop 126:318–328PubMedCrossRefGoogle Scholar
  52. Lindsey CC (1966) Body sizes of poikilothermic vertebrates at different latitudes. Evolution 20:456–465CrossRefGoogle Scholar
  53. Lindstedt SL, Boyce MS (1985) Seasonality, fasting endurance, and body size in mammals. Am Nat 125:873–878CrossRefGoogle Scholar
  54. Lister AM (1989) Rapid dwarfing of red deer on Jersey in the Last Interglacial. Nature 342:342–539CrossRefGoogle Scholar
  55. Lister AM (1993) Mammoths in miniature. Nature 362:288–289CrossRefGoogle Scholar
  56. Lomolino MV (1985) Body size of mammals on islands: the island rule re-examined. Am Nat 125:310–316CrossRefGoogle Scholar
  57. Lomolino MV (2005) Body size evolution in insular vertebrates: generality of the island rule. J Biogeogr 32:1683–1699CrossRefGoogle Scholar
  58. MacFadden BJ (1986) Fossil horses from “Eohippus” (Hyracotherium) to Equus: scaling, Cope’s Law, and the evolution of body size. Paleobiology 12:355–369Google Scholar
  59. Maehr DS, Belden RC, Land ED, Wilkins L (1990) Food habits of panthers in southwest Florida. J Wildl Manag 54:420–423CrossRefGoogle Scholar
  60. Mayr E (1956) Geographic character gradients and climate adaptation. Evolution 10:105–108CrossRefGoogle Scholar
  61. McEwan EH (1970) Energy metabolism of barren ground caribou (Rangifer tarandus). Can J Zool 48:391–392PubMedCrossRefGoogle Scholar
  62. McNab BK (1971) On the ecological significance of Bergmann’s rule. Ecology 52:845–854CrossRefGoogle Scholar
  63. McNab BK (1978) Energetics of arboreal folivores: physiological problems and ecological consequences of feeding on an ubiquitous food supply. In: Montgomery GG (ed) The ecology of arboreal folivores. Smithsonian Institute Press, Washington, pp 153–162Google Scholar
  64. McNab BK (1983) Energetics, body size, and the limits to endothermy. J Zool Lond 199:1–29CrossRefGoogle Scholar
  65. McNab BK (1994) Resource use and the occurrence of land and freshwater vertebrates on oceanic islands. Am Nat 144:643–660CrossRefGoogle Scholar
  66. McNab BK (1999) On the comparative ecological and evolutionary significance of total and mass-specific rates of metabolism. Physiol Biochem Zool 72:642–644PubMedCrossRefGoogle Scholar
  67. McNab BK (2000a) The influence of body mass, climate, and distribution on the energetics of South Pacific pigeons. Comp Biochem Physiol A 127:309–329CrossRefGoogle Scholar
  68. McNab BK (2000b) The standard energetics of mammalian carnivores: Felidae and Hyaenidae. Can J Zool 78:2227–2239CrossRefGoogle Scholar
  69. McNab BK (2002) Minimizing energy expenditure facilitates vertebrate persistence on oceanic islands. Ecol Let 5:693–704CrossRefGoogle Scholar
  70. McNab BK (2005) Ecological factors influence energetics in the Order Carnivora. Acta Zool Sinica 51:535–545Google Scholar
  71. McNab BK (2008a) An analysis of the factors that influence the level and scaling of mammalian BMR. Comp Biochem Physiol A 151:5–28CrossRefGoogle Scholar
  72. McNab BK (2008b) Energy expenditure cannot be effectively analyzed with phylogenetically-based techniques. In: Morris S, Vosloo A (eds) 4th CPB Meeting in Africa: MARA 2008. Molecules to migrations: the pressures of life. Medimond International Proceedings, Bologna, pp 621–625Google Scholar
  73. McNab BK (2009) Resources and energetics determined dinosaur maximal size. Proc Nat Acad Sci USA 106:12184–12188PubMedCentralPubMedCrossRefGoogle Scholar
  74. McNab BK, Morrison PR (1963) Body temperature and metabolism of subspecies of Peromyscus from arid and mesic environments. Ecol Monogr 33:63–82CrossRefGoogle Scholar
  75. Medina AI, Dardo A, Martí DA, Bidau CJ (2007) Subterranean rodents of the genus Ctenomys (Caviomorpha, Ctenomyidae) follow the converse to Bergmann’s rule. J Biogeogr 34:1439–1454CrossRefGoogle Scholar
  76. Meiri S, Dayan T (2003) On the validity of Bergmann’s rule. J Biogeogr 30:331–351CrossRefGoogle Scholar
  77. Meiri S, Dayan T, Simberloff D (2004) Carnivores, biases and Bergmann’s rule. Biol J Linn Soc 81:579–588CrossRefGoogle Scholar
  78. Meiri S, Yom-Tov Y, Geffen E (2007) What determines conformity to Bergmann’s rule? Global Ecol Biogeogr 16:788–794CrossRefGoogle Scholar
  79. Meiri S, Cooper N, Purvis A (2008a) This island rule: made to be broken? Proc R Soc B 245:141–148CrossRefGoogle Scholar
  80. Meiri S, Meijaard E, Wich SA, Groves CP, Helgen KM (2008b) Mammals of Borneo—small size on a large island. J Biogeogr 35:1087–1094CrossRefGoogle Scholar
  81. Merritt JF, Zegers DA (2002) Maximizing survivorship in cold: thermogenic profiles of non-hibernating mammals. Acta Theriol 47:221–234CrossRefGoogle Scholar
  82. Mezhzhderin VA (1964) Dehnel’s phenomenon and its possible explanation. Acta Theriol 8:95–114CrossRefGoogle Scholar
  83. Miller JS, Hickling GJ (1990) Fasting endurance and the evolution of mammalian body size. Funct Ecol 4:5–12CrossRefGoogle Scholar
  84. Mousseau TA (1997) Ectotherms follow the converse to Bergmann’s rule. Evolution 51:630–632CrossRefGoogle Scholar
  85. Mueller P, Diamond J (2001) Metabolic rate and environmental productivity: well-provisioned animals evolved to run and idle fast. Proc Natl Acad Sci USA 98:12550–12554PubMedCentralPubMedCrossRefGoogle Scholar
  86. Nilssen KJ, Maathiesen SD, Blix AS (1994) Metabolic rate and plasma T3 in ad. lib. fed and starved muskoxen. Rangifer 14:79–81CrossRefGoogle Scholar
  87. Ochocin’ska D, Taylor JRE (2003) Bergmann’s rule in shrews: geographical variation of body size in Palearctic Sorex species. Biol J Linn Soc 78:365–381CrossRefGoogle Scholar
  88. Partridge L, Coyne JA (1997) Bergmann’s rule in ectotherms: is it adaptive? Evolution 51:632–635CrossRefGoogle Scholar
  89. Raia P, Meiri S (2006) The island rule in large mammals: paleontology meets ecology. Evolution 60:1731–1742PubMedCrossRefGoogle Scholar
  90. Raia P, Barbera C, Conte M (2003) The fast life of a dwarfed giant. Evol Ecol 17:293–312CrossRefGoogle Scholar
  91. Ralls K, Harvey PH (1985) Geographic variation in size and sexual dimorphism of North American weasels. Biol J Linn Soc 25:119–167CrossRefGoogle Scholar
  92. Rasmussen GSA, Gusset M, Courchamp F, Macdonald DW (2008) Achilles’ heel of sociality revealed by energetic poverty trap in cursorial hunters. Am Nat 172:508–518PubMedCrossRefGoogle Scholar
  93. Ray C (1960) The application of Bergmann’s and Allen’s rules to the poikilotherms. J Morphol 106:85–108PubMedCrossRefGoogle Scholar
  94. Robinette WL, Gashwiler JS, Morris OW (1959) Food habits of the cougar in Utah and Nevada. J Wildl Manag 23:261–273CrossRefGoogle Scholar
  95. Rodríguez MA, López-Sañudo IL, Hawkins BA (2006) The geographic distribution of mammal body size in Europe. Glob Ecol Biogeogr 15:173–181CrossRefGoogle Scholar
  96. Rodríguez MA, Olalla-Tárraga MA, Hawkins BA (2008) Bergmann’s rule and the geography of mammal body size in the Western Hemisphere. Glob Ecol Biogeogr 17:274–283CrossRefGoogle Scholar
  97. Roemer GW, Smith DA, Garcelon DK, Wayne RK (2001) The behavioural ecology of the island fox (Urocyon littoralis). J Zool Lond 255:1–14CrossRefGoogle Scholar
  98. Rosenzweig ML (1968a) Net primary productivity of terrestrial communities: prediction from climatological data. Am Nat 102:67–74CrossRefGoogle Scholar
  99. Rosenzweig ML (1968b) The strategy of body size in mammalian carnivores. Am Midl Nat 80:299–315CrossRefGoogle Scholar
  100. Roth VL (1990) Insular dwarf elephants: a case study in body mass estimation and ecological inference. In: Damuth J, McFadden BJ (eds) Body size in mammalian paleontology. Cambridge University Press, Cambridge, pp 151–179Google Scholar
  101. Roth VL (1992) Inferences from allometry and fossils: dwarfing of elephants on islands. Oxf Surv Evol Biol 8:259–288Google Scholar
  102. Schaller JB, Crawshaw PG Jr (1980) Movement patterns of jaguar. Biotropica 12:161–168CrossRefGoogle Scholar
  103. Schmidt NM, Jensen PM (2003) Changes in mammalian body length over 175 years—adaptations to fragmented to landscape? Conserv Ecol 7:6Google Scholar
  104. Schmidt NM, Jensen PM (2005) Concomitant patterns in avian and mammalian body length changes in Denmark. Ecol Soc 10:5Google Scholar
  105. Scholander PF (1955) Evolution of climatic adaptation in homeotherms. Evolution 9:15–26CrossRefGoogle Scholar
  106. Simms DA (1979) North American weasels: resource utilization and distribution. Can J Zool 57:504–520CrossRefGoogle Scholar
  107. Sondaar PY (1977) Insularity and its effect on mammal evolution. In: Hecht MK, Goody PC, Hecht BM (eds) Major patterns in vertebrate evolution. Plenum, New York, pp 671–707Google Scholar
  108. Spalding DJ, Lesowski J (1971) Winter food of the cougar in south-central British Columbia. J Wildl Manag 35:378–381CrossRefGoogle Scholar
  109. Stanley SM (1973) An explanation for Cope’s rule. Evolution 27:1–26CrossRefGoogle Scholar
  110. Stuenes S (1989) Taxonomy, habits, and relationships of the subfossil Madagascaran hippopotami Hippopotamus lemerlei and H. madagascarensis. J Vertebr Paleontol 9:241–268CrossRefGoogle Scholar
  111. Swenson JE, Adamic M, Huber D, Stokke S (2007) Brown bear body mass and growth in northern and southern Europe. Oecologia 153:37–47PubMedCrossRefGoogle Scholar
  112. Taylor JM, Smith SC, Calaby JH (1985) Altitudinal distribution and body size among New Guinean Rattus (Rodentia: Muridae). J Mammal 66:353–358CrossRefGoogle Scholar
  113. Toweill DE, Meslow EC (1977) Food habits of cougars in Oregon. J Wildl Manag 41:376–378CrossRefGoogle Scholar
  114. Van Valen L (1973) Pattern and the balance of nature. Evol Theory 1:31–49Google Scholar
  115. Van Valkenburgh B (1991) Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators. Paleobiology 17:340–362Google Scholar
  116. Van Valkenburgh B, Wang X, Damuth J (2004) Cope’s rule, hypercarnivory, and extinction in North American canids. Science 306:101–104PubMedCrossRefGoogle Scholar
  117. Van Vuren DH, Bakker VJ (2008) Rapid morphological change in an insular population of feral sheep. J Zool Lond 277:221–231CrossRefGoogle Scholar
  118. Vartanyan SI, Garutt VE, Sher AV (1993) Holocene dwarf mammoths from Wrangel Island in the Siberian Arctic. Nature 362:337–340CrossRefGoogle Scholar
  119. Webster AJ, Gittleman JL, Purvis A (2004) The life history legacy of evolutionary body size change in carnivores. J Evol Biol 17:396–407PubMedCrossRefGoogle Scholar
  120. White TA, Searle JB (2007) Factors explaining increased body size in common shrews (Sorex araneus) on Scottish Islands. J Biogeogr 34:356–363CrossRefGoogle Scholar
  121. White CR, Seymour RS (2003) Mammalian basal metabolic rate is proportional to body mass2/3. Proc Natl Acad Sci USA 100:4046–4049PubMedCentralPubMedCrossRefGoogle Scholar
  122. Wikelski M, Thom C (2000) Marine iguanas shrink to survive El Niño. Nature 403:37–38PubMedCrossRefGoogle Scholar
  123. Wong ST, Servheen C, Ambu L, Norhayat A (2005) Impacts of fruit production cycles on Malayan sun bears and bearded pigs in lowland tropical forest of Sabah Malaysian Borneo. J Trop Ecol 21:627–639CrossRefGoogle Scholar
  124. Wyatt JR, Eltringham SK (1974) The daily activity of the elephant in the Rwenzori National Park. East Afr Wildl J 12:273–289CrossRefGoogle Scholar
  125. Yáñez JL, Cárdenas JC, Gezelle P, Jaksic FM (1986) Food habits of the southernmost mountain lions (Felis concolor) in South America: natural versus livestocked ranges. J Mammal 67:604–606CrossRefGoogle Scholar
  126. Yom-Tov Y, Geffen E (2006) Geographic variation in body size: the effects of ambient temperature and precipitation. Oecologia 148:213–218PubMedCrossRefGoogle Scholar
  127. Yom-Tov Y, Nix H (1986) Climatological correlates for body size of five species of Australian mammals. Biol J Linn Soc 29:245–262CrossRefGoogle Scholar
  128. Yom-Tov Y, Yom-Tov J (2005) Global warming, Bergmann’s rule and body size in the masked shrew Sorex cinereus Kerr in Alaska. J Anim Ecol 74:803–808CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of BiologyUniversity of FloridaGainesvilleUSA

Personalised recommendations