, Volume 163, Issue 4, pp 855–865 | Cite as

Hydraulic lift through transpiration suppression in shrubs from two arid ecosystems: patterns and control mechanisms

  • Iván Prieto
  • Karina Martínez-Tillería
  • Luis Martínez-Manchego
  • Sonia Montecinos
  • Francisco I. Pugnaire
  • Francisco A. Squeo
Physiological ecology - Original Paper


Hydraulic lift (HL) is the passive movement of water through the roots from deep wet to dry shallow soil layers when stomata are closed. HL has been shown in different ecosystems and species, and it depends on plant physiology and soil properties. In this study we explored HL patterns in several arid land shrubs, and developed a simple model to simulate the temporal evolution and magnitude of HL during a soil drying cycle under relatively stable climatic conditions. This model was then used to evaluate the influence of soil texture on the quantity of water lifted by shrubs in different soil types. We conducted transpiration suppression experiments during spring 2005 in Chile and spring 2008 in Spain on five shrub species that performed HL, Flourensia thurifera, Senna cumingii and Pleocarphus revolutus (Chile), Retama sphaerocarpa and Artemisia barrelieri (Spain). Shrubs were covered with a black, opaque plastic fabric for a period of 48–72 h, and soil water potential was recorded at different depths under the shrubs. While the shrubs remained covered, water potential continuously increased in shallow soil layers until the cover was removed. The model output indicated that the amount of water lifted by shrubs is heavily dependent on soil texture, as shrubs growing in loamy soils redistributed up to 3.6 times more water than shrubs growing on sandy soils. This could be an important consideration for species growing in soils with different textures, as their ability to perform HL would be context dependent.


Hydraulic lift Mediterranean shrubs Soil texture Soil water potential Transpiration suppression 



We would like to thank Albert Solé for his help with the soil moisture release curve and Cristina Armas, Michele Faisey, Francisco M. Padilla, and two anonymous reviewers for helpful comments on the manuscript. This work was supported by FONDECYT (1071012), Compañía Minera del Pacífico (CMP), Chilean Millenium Iniciative (ICM P02-051) and CONICYT (PFB-23) grants in Chile, and the Spanish Ministry of Science and Innovation (grants CGL2004-0355-E and CGL2007-63718) in Spain. The experiments described here comply with the current laws of the countries in which they were performed.


  1. Aanderud ZT, Richards JH (2009) Hydraulic redistribution may stimulate decomposition. Biogeochemistry 95:323–333. doi: 10.1007/s10533-009-9339-3 CrossRefGoogle Scholar
  2. Amenu G, Kumar P (2008) A model for hydraulic redistribution incorporating coupled soil-root moisture transport. Hydrol Earth Syst Sci 12:55–74CrossRefGoogle Scholar
  3. Athar M, Jhonson DA (1997) Effect of drought on the growth and survival of Rhizobium meliloti strains from Pakistan and Nepal. J Arid Environ 35:335–340CrossRefGoogle Scholar
  4. Baker JM, van Bavel CHM (1988) Water transfer through cotton plants connecting soil regions of differing water potential. Agron J 80:993–997Google Scholar
  5. Bauerle TL, Richards JH, Smart DR, Eissenstat DM (2008) Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil. Plant Cell Environ 31:177–186PubMedGoogle Scholar
  6. Bristow K (1984) The effects of texture on the resistance to water movement within the rhizosphere. Soil Sci Soc Am J 48:266–270CrossRefGoogle Scholar
  7. Brown RW, Bartos DL (1982) A calibration model for screen-caged peltier thermocouple psychrometers (Research Paper INT-293). USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UTGoogle Scholar
  8. Burgess SSO, Adams MA, Turner NC, Ong CK (1998) The redistribution of soil water by tree root systems. Oecologia 115:306–311CrossRefGoogle Scholar
  9. Burgess SSO, Adams MA, Turner NC, White DA, Ong CK (2001) Tree roots: conduits for deep recharge of soil water. Oecologia 126:158–165CrossRefGoogle Scholar
  10. Caldwell MM, Richards JM (1989) Hydraulic lift: water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia 79:1–5CrossRefGoogle Scholar
  11. Caldwell MM, Dawson TE, Richards JM (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161CrossRefGoogle Scholar
  12. Canadell J, Zedler PH (1995) Underground structures of woody plants in mediterranean ecosystems of Australia, California and Chile. In: Arroyo MTK, Zedler PH, Fox M (eds) Ecology and biogeography of mediterranean ecosystems in Chile, California and Australia. Springer, Berlin, pp 177–210Google Scholar
  13. Dawson TE (1996) Determining water use by trees and forests from isotopic, energy, balance and transpiration analyses: the roles of tree size and hydraulic lift. Tree Physiol 16:263–272PubMedGoogle Scholar
  14. Dawson TE, Pate JS (1996) Seasonal water uptake and movement in root systems of Australian phreatophytic plants of dimorphic root morphology: a stable isotope investigation. Oecologia 107:13–20CrossRefGoogle Scholar
  15. Domec JC, Warren JM, Meinzer FC (2004) Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution. Oecologia 141:7–16CrossRefPubMedGoogle Scholar
  16. Emerman SH, Dawson TE (1996) Hydraulic lift and its influence on the water content of the rhizosphere: an example from sugar maple, Acer saccharum. Oecologia 108:273–278Google Scholar
  17. Espeleta JF, West JB, Donovan LA (2004) Species-specific patterns of hydraulic lift in co-occurring adult trees and grasses in a sandhill community. Oecologia 138:341–349CrossRefPubMedGoogle Scholar
  18. Haase P, Pugnaire FI, Fernandez EM, Puigdefabregas J, Clark SC, Incoll LD (1996) An investigation of rooting depth of the semiarid shrub Retama sphaerocarpa (L.) Boiss. by labelling of ground water with a chemical tracer. J Hydrol 177:23–31CrossRefGoogle Scholar
  19. Haase P, Pugnaire FI, Clark SC, Incoll LD (1999) Diurnal and seasonal changes in cladode photosynthetic rate in relation to canopy age structure in the leguminous shrub Retama sphaerocarpa. Funct Ecol 13:640–649CrossRefGoogle Scholar
  20. Hillel D (2004) Soil physics and soil physical characteristics. In: Introduction to environmental soil physics. Academic, New York, pp 3–19Google Scholar
  21. Hirota I, Sakuratani T, Sato T, Higuchi H, Nawata E (2004) A split-root apparatus for examining the effects of hydraulic lift by trees on the water status of neighbouring crops. Agrofor Syst 60:181–187CrossRefGoogle Scholar
  22. Hodnett MG, Tomasella J (2002) Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedo-transfer functions developed for tropical soils. Geoderma 108:155–180CrossRefGoogle Scholar
  23. Howard AR, Van Iersel MW, Richards JH, Donovan LA (2009) Night-time transpiration can decrease hydraulic redistribution. Plant Cell Environ 32:1060–1070CrossRefPubMedGoogle Scholar
  24. Hultine KR, Scott RL, Cable WL, Goodrich DC, Williams DG (2004) Hydraulic redistribution by a dominant, warm-desert phreatophyte: seasonal patterns and response to precipitation pulses. Funct Ecol 18:530–538CrossRefGoogle Scholar
  25. Hultine KR, Koepke DF, Pockman WT, Fravolini A, Sperry JS, Williams DG (2006) Influence of soil texture on hydraulic properties and water relations of a dominant warm-desert phreatophyte. Tree Physiol 26:313–326CrossRefPubMedGoogle Scholar
  26. Kurz C, Otieno D, Lobo do Vale R, Siegwolf R, Schmidt M, Herd A, Nogueira C, Soares David T, Soares David S, Tenhunen J, Santos Pereira J, Chaves M (2006) Hydraulic lift in cork oak trees in a savannah-type Mediterranean ecosystem and its contribution to the local water balance. Plant Soil 282:361–378Google Scholar
  27. Lee JE, Oliveira RS, Dawson TE, Fung I (2005) Root functioning modifies seasonal climate. Proc Natl Acad Sci USA 102:17576–17581CrossRefPubMedGoogle Scholar
  28. León M, Squeo FA (2004) Levantamiento hidráulico: la raíz del asunto. In: Cabrera HM (ed) Fisiología ecológica en plantas: mecanismos y respuestas a estrés en los ecosistemas. Ediciones Pontificia Universidad Católica de Valparaíso, Valparaíso, pp 99–109Google Scholar
  29. Ludwig F, Dawson TE, de Kroon H, Berendse F, Prins HHT (2003) Hydraulic lift in Acacia tortilis trees on an East African Savanna. Oecologia 134:293–300PubMedGoogle Scholar
  30. Martínez-Manchego LA (2007) Efecto de las precipitaciones sobre la redistribución hidráulica de arbustos en la zona semiárida de Chile (MSc dissertation). Universidad de La Serena, ChileGoogle Scholar
  31. Meinzer FC, Brooks JR, Bucci SJ, Goldstein G, Scholz FG, Warren JM (2004) Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physiol 24:919–928PubMedGoogle Scholar
  32. Meinzer FC, Warren JM, Brooks JR (2007) Species-specific partitioning of soil water resources in an old-growth Douglas-fir-western hemlock forest. Tree Physiol 27:871–880PubMedGoogle Scholar
  33. Mendel M, Hergarten S, Neugebahuer HJ (2002) On a better understanding of hydraulic lift: a numerical study. Water Resour Res 38:1–10CrossRefGoogle Scholar
  34. Millikin-Ishikawa C, Bledsoe CS (2000) Seasonal and diurnal patterns of soil water potential in the rhizosphere of blue oaks: evidence for hydraulic lift. Oecologia 125:459–465CrossRefGoogle Scholar
  35. Muñoz MR, Squeo FA, Leon MF, Tracol Y, Gutierrez JR (2008) Hydraulic lift in three shrub species from the Chilean coastal desert. J Arid Environ 72:624–632CrossRefGoogle Scholar
  36. Nadezhdina N, Ferreira M, Silva R, Pacheco C (2008) Seasonal variation of water uptake of a Quercus suber tree in Central Portugal. Plant Soil 305:105–119CrossRefGoogle Scholar
  37. Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51CrossRefGoogle Scholar
  38. Olivares NC (2003) Diversidad de sistemas radiculares de especies perennes en dos ambientes del desierto costero: Romeral (29°S) y Paposo (25°S) (MSc dissertation). Universidad de La Serena, ChileGoogle Scholar
  39. Olivares S, Squeo FA (1999) Patrones fenológicos en especies arbustivas del desierto costero del norte-centro de Chile. Rev Chil Hist Nat 72:353–370Google Scholar
  40. Oliveira RS, Dawson TE, Burges SSO, Nepstad D (2005) Hydraulic redistribution in three Amazonian trees. Oecologia 145:354–363CrossRefPubMedGoogle Scholar
  41. Prieto I, Kikvidze Z, Pugnaire FI (2010) Hydraulic lift: soil processes and transpiration in the Mediterranean leguminous shrub Retama sphaerocarpa (L.) Boiss. Plant Soil 329:447–456. doi: 10.1007/s11104-009-0170-3
  42. Pugnaire FI, Haase P, Puigdefabregas J (1996) Facilitation between higher plant species in a semiarid environment. Ecology 77:1420–1426CrossRefGoogle Scholar
  43. Pugnaire FI, Luque MT, Armas C, Gutierrez L (2006) Colonization processes in semi-arid Mediterranean old-fields. J Arid Environ 65:591–603CrossRefGoogle Scholar
  44. Puigdefábregas J, Alonso JM, Delgado L, Domingo F, Cueto M, Gutiérrez L, Lázaro R, Nicolau JM, Sánchez G, Solé A, Vidal S (1996) The Rambla honda field site: interactions of soil and vegetation along a catena in semi-arid Southeast Spain. In: Brandt JC, Thornes JB (eds) Mediterranean desertification and land use, vol 1. Wiley, New York, pp 137–168Google Scholar
  45. Querejeta JI, Egerton-Warburton LM, Allen MF (2003) Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134:55–64CrossRefPubMedGoogle Scholar
  46. Querejeta JI, Egerton-Warburton LM, Allen MF (2007) Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California Oak savanna. Soil Biol Biochem 39:409–417. doi: 10.1016/j.soilbio.2006.08.008 CrossRefGoogle Scholar
  47. Querejeta JI, Egerton-Warburton LM, Allen MF (2009) Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology 90:649–662CrossRefPubMedGoogle Scholar
  48. Richards AL (1941) A pressure-membrane extraction apparatus for soil solution. Soil Sci 51:377–386CrossRefGoogle Scholar
  49. Richards JM, Caldwell MM (1987) Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–489CrossRefGoogle Scholar
  50. Ryel RJ, Caldwell MM, Yoder CK, Or D, Leffler AJ (2002) Hydraulic redistribution in a stand of Artemisia tridentata: evaluation of benefits to transpiration assessed with a simulation model. Oecologia 130:173–184Google Scholar
  51. Ryel RJ, Caldwell MM, Leffler AJ, Yoder CK (2003) Rapid soil moisture recharge to depth by roots in a stand of Artemisia tridentata. Ecology 83:757–764CrossRefGoogle Scholar
  52. Ryel RJ, Leffler AJ, Peek MS, Ivans CY, Caldwell MM (2004) Water conservation in Artemisia tridentata through redistribution of precipitation. Oecologia 141:335–345CrossRefPubMedGoogle Scholar
  53. Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494CrossRefGoogle Scholar
  54. Scholz F, Bucci SJ, Goldstein G, Moreira MZ, Meinzer FC, Domec JC, Villalobos-Vega R, Franco AC, Miralles-Wilheim F (2008) Biophysical and life-history determinants of hydraulic lift in Neotropical savanna trees. Funct Ecol 22:773–786CrossRefGoogle Scholar
  55. Schulze ED, Caldwell MM, Canadell J, Mooney HA, Jackson RB, Parson D, Scholes R, Sala OE, Trimborn P (1998) Downward flux of water through roots (i.e., inverse hydraulic lift) in dry Kalahari sands. Oecologia 115:460–462CrossRefGoogle Scholar
  56. Scott RL, Cable WL, Hultine KR (2008) The ecohydrologic significance of hydraulic redistribution in a semiarid savanna. Water Resour Res 44:W02440. doi: 10.1029/2007WR006149 CrossRefGoogle Scholar
  57. Siqueira M, Katul G, Porporato A (2008) Onset of water stress, hysteresis in plant conductance, and hydraulic lift: scaling soil water dynamics from millimeters to meters. Water Resour Res 44:W01432. doi: 10.1029/2007WR006094 CrossRefGoogle Scholar
  58. Smart DR, Carlisle E, Goebel M, Nuñez BA (2005) Transverse hydraulic redistribution by a grapevine. Plant Cell Environ 28:157–166CrossRefGoogle Scholar
  59. Snyder KA, James JJ, Richards JH, Donovan LA (2008) Does hydraulic lift or night-time transpiration facilitate nitrogen acquisition? Plant Soil 306:159–166CrossRefGoogle Scholar
  60. Sperry JS, Hacke UG (2002) Desert shrubs water relations with respect to soil characteristics and plant functional type. Funct Ecol 16:367–378CrossRefGoogle Scholar
  61. Squeo FA, Olivares N, Olivares S, Pollastri A, Aguirre E, Aravena R, Jorquera CB, Ehleringer JR (1999) Grupos funcionales en arbustos desérticos definidos en base a las fuentes de agua utilizadas. Gayana Botánica 56:1–15Google Scholar
  62. Squeo FA, Aravena R, Aguirre E, Pollastri A, Jorquera CB, Ehleringer JR (2006) Groundwater dynamics in a coastal aquifer in North-Central Chile: implications for groundwater recharge in an arid ecosystem. J Arid Environ 67:240–254Google Scholar
  63. Swaine EK, Swaine MD, Killham K (2007) Effects of drought on isolates of Bradyrhizobium elkanii cultured from Albizia adianthifolia seedlings of different provenances. Agrofor Syst 69:135–145CrossRefGoogle Scholar
  64. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898Google Scholar
  65. Wan C, Xu W, Sosebee RE, Machado S, Archer T (2000) Hydraulic lift in drought-tolerant and -susceptible maize hybrids. Plant Soil 219:117–226CrossRefGoogle Scholar
  66. Wang X, Tang C, Guppy CN, Sale PWG (2009) The role of hydraulic lift and subsoil P placement in P uptake of cotton (Gossypium hirsutum L.). Plant Soil 325:263–275. doi: 10.1007/s11104-009-9977-1 CrossRefGoogle Scholar
  67. Warren JM, Meinzer FC, Brooks JR, Domec JC, Coulombe R (2007) Hydraulic redistribution of soil water in two old-growth coniferous forests: quantifying patterns and controls. New Phytol 173:753–765CrossRefPubMedGoogle Scholar
  68. Warren JM, Brooks JR, Meinzer FC, Eberhart JL (2008) Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol 178:382–394CrossRefPubMedGoogle Scholar
  69. William K, Caldwell MM, Richards JM (1993) The influence of shade and clouds on soil water potential: the buffered behaviour of hydraulic lift. Plant Soil 157:83–95Google Scholar
  70. Yoder CK, Nowak R (1999) Hydraulic lift among native plant species in the Mojave Desert. Plant Soil 215:93–102CrossRefGoogle Scholar
  71. Zou C, Barnes P, Archer S, McMurtry C (2005) Soil moisture redistribution as a mechanism of facilitation in savanna tree-shrub clusters. Oecologia 145:32–40CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Iván Prieto
    • 1
  • Karina Martínez-Tillería
    • 2
    • 3
  • Luis Martínez-Manchego
    • 4
  • Sonia Montecinos
    • 3
    • 5
  • Francisco I. Pugnaire
    • 1
  • Francisco A. Squeo
    • 2
    • 3
  1. 1.Consejo Superior de Investigaciones CientíficasEstación Experimental de Zonas Áridas (EEZA)AlmeríaSpain
  2. 2.Departamento de Biología, Facultad de Ciencias, Instituto de Ecología y Biodiversidad (IEB)Universidad de La SerenaLa SerenaChile
  3. 3.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)La SerenaChile
  4. 4.Universidad de San AgustínArequipaPeru
  5. 5.Universidad de La SerenaLa SerenaChile

Personalised recommendations