, Volume 163, Issue 3, pp 729–735 | Cite as

Soil shapes community structure through fire

  • Fernando Ojeda
  • Juli G. Pausas
  • Miguel Verdú
Community ecology - Original Paper


Recurrent wildfires constitute a major selecting force in shaping the structure of plant communities. At the regional scale, fire favours phenotypic and phylogenetic clustering in Mediterranean woody plant communities. Nevertheless, the incidence of fire within a fire-prone region may present strong variations at the local, landscape scale. This study tests the prediction that woody communities on acid, nutrient-poor soils should exhibit more pronounced phenotypic and phylogenetic clustering patterns than woody communities on fertile soils, as a consequence of their higher flammability and, hence, presumably higher propensity to recurrent fire. Results confirm the predictions and show that habitat filtering driven by fire may be detected even in local communities from an already fire-filtered regional flora. They also provide a new perspective from which to consider a preponderant role of fire as a key evolutionary force in acid, infertile Mediterranean heathlands.


Community phylogenetics Fire traits Mediterranean heathlands Nutrient-poor soils Phenotypic clustering 



This work has been partially supported by projects VAMPIRO (CGL2008-05289-C02-01/BOS) and PERSIST (CGL2006-07126/BOS), financed by the Spanish Ministerio de Ciencia e Innovación, and project P07-RNM-02869, financed by the Junta de Andalucía regional government (Spain). Fieldwork was carried out under permission and complied with legal requirements of the Andalusian regional government.


  1. Bayer RJ, Puttock CF, Kelchner SA (2000) Phylogeny of South African Gnaphalieae (Asteraceae) based on two noncoding chloroplast sequences. Am J Bot 87:259–272CrossRefPubMedGoogle Scholar
  2. Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394CrossRefPubMedGoogle Scholar
  3. Bond WJ, van Wilgen BW (1996) Fire and plants. Chapman & Hall, LondonGoogle Scholar
  4. Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz FA (2004) Phylogenetic overdispersion in Floridian oak communities. Am Nat 163:823–843CrossRefPubMedGoogle Scholar
  5. Clarke PJ (2002) Habitat islands in fire-prone vegetation: do landscape features influence community composition? J Biogeogr 29:677–684CrossRefGoogle Scholar
  6. Clarke PJ, Knox KJE (2002) Post-fire response of shrubs in the tablelands of eastern Australia: do existing models explain habitat differences? Aust J Bot 50:53–62CrossRefGoogle Scholar
  7. Coca-Pérez M (2001) Árboles, arbustos y matas del Parque Natural Los Alcornocales (2nd edn). OrniTour, JerezGoogle Scholar
  8. Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plant diversity in Mediterranean-climate regions. Trends Ecol Evol 11:362–366CrossRefGoogle Scholar
  9. Daniau AL, Sánchez-Goñi MF, Beaufort L, Laggoun-Défarge F, Loutre MF, Duprat J (2007) Dansgaard–Oeschger climatic variability revealed by fire emissions in southwestern Iberia. Quat Sci Rev 26:1369–1383CrossRefGoogle Scholar
  10. Elvira-Martín L, Hernando-Lara C (1989) Inflamabilidad y energía de las especies de sotobosque. Monografías INIA no. 68, MadridGoogle Scholar
  11. Garrido B, Hidalgo R (1998) Evaluación de los ecosistemas de la cuenca fluvial del río Hozgarganta. Estudio botánico. Unpublished report. Junta de Andalucía, SevillaGoogle Scholar
  12. González-Donoso JM, Linares D, Martín-Algarra A, Serrano F (1987) El Complejo tectosedimentario del Campo de Gibraltar. Datos sobre su edad y significado geológico. Bol R Soc Esp Hist Nat (Geol) 82:233–251Google Scholar
  13. Guzmán B, Vargas P (2005) Systematics, character evolution, and biogeography of Cistus L. (Cistaceae) based on ITS, trnL-trnF, and matK sequences. Mol Phyl Evol 37:644–660CrossRefGoogle Scholar
  14. Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243CrossRefPubMedGoogle Scholar
  15. Helmus MR, Savage K, Diebel MW, Maxted JT, Ives AR (2007) Separating the determinants of phylogenetic community structure. Ecol Lett 10:917–925CrossRefPubMedGoogle Scholar
  16. Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164CrossRefGoogle Scholar
  17. Keeley JE (1986) Resilience of Mediterranean shrub communities to fires. In: Dell B, Hopkins AJM, Lamont BB (eds) Resilience of Mediterranean-type ecosystems. Junk, Dordrecht, pp 95–112Google Scholar
  18. Keeley JE, Bond WJ (1997) Convergent seed germination in South African fynbos and Californian chaparral. Plant Ecol 133:153–167CrossRefGoogle Scholar
  19. Kellman M (1984) Synergistic relationships between fire and low soil fertility in Neotropical savannas: a hypothesis. Biotropica 16:158–160CrossRefGoogle Scholar
  20. Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems—a review. Plant Soil 256:41–66CrossRefGoogle Scholar
  21. Kron KA, Chase MW (1993) Systematics of the Ericaceae, Empetraceae, Epacridaceae and related taxa based upon rbcL sequence data. Ann Miss Bot Gard 80:735–741CrossRefGoogle Scholar
  22. Legendre P, Lapointe F, Casgrain P (1994) Modeling brain evolution from behavior: a permutational regression approach. Evolution 48:1487–1499CrossRefGoogle Scholar
  23. Northup RR, Dahlgren RA, McColl JG (1998) Polyphenols as regulators of plant–litter–soil interactions in northern California’s pygmy forest: a positive feedback? Biogeochem 42:189–220CrossRefGoogle Scholar
  24. Ojeda F (2001) El fuego como factor clave en la evolución de plantas mediterráneas. In: Zamora R, Pugnaire FI (eds) Ecosistemas Mediterráneos: análisis funcional. Colección Textos Universitarios 32. CSIC, Madrid, pp 319–349Google Scholar
  25. Ojeda F, Arroyo J, Marañón T (1995) Biodiversity components and conservation of Mediterranean heathlands in southern Spain. Biol Conserv 72:61–72CrossRefGoogle Scholar
  26. Ojeda F, Marañón T, Arroyo J (1996) Patterns of ecological, chorological and taxonomic diversity on both sides of the Strait of Gibraltar. J Veg Sci 7:63–72CrossRefGoogle Scholar
  27. Ojeda F, Marañón T, Arroyo J (2000) Plant biodiversity in the Aljibe Mountains (S. Spain): a comprehensive account. Biodivers Conserv 9:1323–1343CrossRefGoogle Scholar
  28. Orians GH, Milewski AV (2007) Ecology of Australia: the effects of nutrient-poor soils and intense fires. Biol Rev 82:393–423CrossRefPubMedGoogle Scholar
  29. Paula S, Arianoutsou M, Kazanis D, Lloret F, Buhk C, Ojeda F, Luna B, Moreno JM, Rodrigo A, Espelta JM, Palacio S, Fernández-Santos B, Fernandes PM, Pausas JG (2009) Fire-related traits for plant species of the Mediterranean Basin. Ecology 90:1420CrossRefGoogle Scholar
  30. Pausas JG, Bradstock RA (2007) Fire persistence traits of plants along a productivity and disturbance gradient in Mediterranean shrublands of SE Australia. Global Ecol Biogeogr 16:330–340CrossRefGoogle Scholar
  31. Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. BioScience (in press)Google Scholar
  32. Pausas JG, Verdú M (2005) Plant persistence traits in fire-prone ecosystems of the Mediterranean Basin: a phylogenetic approach. Oikos 109:196–202CrossRefGoogle Scholar
  33. Pausas JG, Verdú M (2008) Fire reduces morphospace occupation in plant communities. Ecology 89:2181–2186CrossRefPubMedGoogle Scholar
  34. Pausas JG, Bradstock RA, Keith DA, Keeley JE, GCTE Fire Network (2004) Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85:1085–1100CrossRefGoogle Scholar
  35. Pausas JG, Keeley JE, Verdú M (2006) Inferring differential evolutionary processes of plant persistence traits in Northern Hemisphere Mediterranean fire-prone ecosystems. J Ecol 94:31–39CrossRefGoogle Scholar
  36. Prasad R, Power JF (1999) Soil fertility management for sustainable agriculture. Lewis, Boca RatonGoogle Scholar
  37. Prinzing A, Reiffers R, Braakhekke WG, Hennekens SM, Tackenberg O, Ozinga WA, Schaminée JHJ, van Groenendael JM (2008) Less lineages–more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecol Lett 11:809–819CrossRefPubMedGoogle Scholar
  38. R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  39. Rodríguez FJ, Pérez-Barrales R, Ojeda F, Vargas P, Arroyo J (2008) The Strait of Gibraltar as a melting pot for plant biodiversity. Quat Sci Rev. doi: 10.1016/j.quascirev.2008.08.006
  40. Schroth G, Lehmann J, Barrios E (2003) Soil nutrient availability and acidity. In: Schroth G, Sinclair FL (eds) Trees, crops and soil fertility: concepts and research methods. CABI, Wallingford, pp 93–130Google Scholar
  41. Schwilk DW (2003) Flammability is a niche construction trait: canopy architecture affects fire intensity. Am Nat 162:725–733CrossRefPubMedGoogle Scholar
  42. Stevens PF (2001) Angiosperm phylogeny website. Version 6. May 2005.
  43. Swenson NG, Enquist BJ, Pither J, Thompson J, Zimmerman JK (2006) The problem and promise of scale dependency in community phylogenetics. Ecology 87:2418–2424CrossRefPubMedGoogle Scholar
  44. Thioulouse J, Chessel D, Dolédec S, Olivier JM (1996) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83CrossRefGoogle Scholar
  45. van der Valk AG (1981) Succession in wetlands: a Gleasonian approach. Ecology 62:688–696CrossRefGoogle Scholar
  46. van Wilgen BW, Higgins KB, Bellstedt DU (1990) The role of vegetation structure and fuel chemistry in excluding fire from forest patches in the fire-prone fynbos shrublands of South Africa. J Ecol 78:210–222CrossRefGoogle Scholar
  47. Verdú M, Pausas JG (2007) Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. J Ecol 95:1316–1323CrossRefGoogle Scholar
  48. Wallander E, Albert VA (2000) Phylogeny and classification of Oleaceae based on RPS 16 and TRN L-F sequence data. Am J Bot 87:1827–1841CrossRefPubMedGoogle Scholar
  49. Webb CO, Ackerly DD, McPeek M, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505CrossRefGoogle Scholar
  50. Webb CO, Ackerly DD, Kembel SW (2005) Phylocom: software for the analysis of community phylogenetic structure and character evolution, version 3.34b.
  51. Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond B 268:2211–2220CrossRefGoogle Scholar
  52. Woolhouse HW (1981) Soil acidity, aluminium toxicity and related problems in the nutrient environment of heathlands. In: Specht RL (ed) Heathlands and related shrublands. Analytical studies: ecosystems of the world 9B. Elsevier, Amsterdam, pp 215–224Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Fernando Ojeda
    • 1
  • Juli G. Pausas
    • 2
  • Miguel Verdú
    • 2
  1. 1.Departamento de BiologíaUniversidad de CádizPuerto RealSpain
  2. 2.Centro de Investigaciones Sobre Desertificación (CIDE, CSIC-UV-GV)AlbalSpain

Personalised recommendations