Oecologia

, Volume 163, Issue 2, pp 303–311 | Cite as

Ectoparasites, uropygial glands and hatching success in birds

  • Anders Pape Møller
  • Johannes Erritzøe
  • Lajos Rózsa
Physiological ecology - Original Paper

Abstract

The uropygial gland of birds secretes wax that is applied to the plumage, where the secretions are hypothesized to eliminate fungi and bacteria, thereby potentially providing important benefits in terms of plumage maintenance. We analyzed variation in size of the uropygial gland in 212 species of birds to determine the function and the ecological correlates of variation in gland size. Bird species with larger uropygial glands had more genera of chewing lice of the sub-order Amblycera, but not of the sub-order Ischnocera, and more feather mites. There was a fitness advantage associated with relatively large uropygial glands because such species had higher hatching success. These findings are consistent with the hypothesis that the uropygial gland functions to manage the community of microorganisms, and that certain taxa of chewing lice have diverged as a consequence of these defenses.

Keywords

Chewing lice Feather mites Hatching success Preen gland 

Notes

Acknowledgments

This research was funded by Ministerio de Educación y Ciencia and FEDER (project CGL2007-61251/BOS) to A. P. Møller, J. J. Soler and J. M. Peralta.

Supplementary material

442_2009_1548_MOESM1_ESM.doc (582 kb)
Supplementary material (DOC 582 kb)

References

  1. Abbas AK, Lichtman AH, Pober JS (1994) Cellular and molecular immunology. Saunders, PhiladelphiaGoogle Scholar
  2. Baggott GK, Graeme-Cook K (2002) Microbiology of natural incubation. In: Deeming DC (ed) Avian incubation behaviour, environment and evolution). Oxford University Press, Oxford, pp 179–191Google Scholar
  3. Banet M (1986) Fever in mammals: is it beneficial? Yale J Biol Med 59:117–124PubMedGoogle Scholar
  4. Belliure J, Sorci G, Møller AP, Clobert J (2000) Dispersal distances predict subspecies richness in birds. J Evol Biol 13:480–487CrossRefGoogle Scholar
  5. Blatteis CM (1986) Fever. is it beneficial? Yale J Biol Med 59:107–116PubMedGoogle Scholar
  6. Bridge ES, Jones AW, Baker AJ (2005) A phylogenetic framework for the terns (Sternini) inferred from mtDNA sequences: implications for taxonomy and plumage evolution. Mol Phylogenet Ecol 35:459–469CrossRefGoogle Scholar
  7. Brook I (1999) Bacterial interference. Crit Rev Microbiol 25:155–172CrossRefPubMedGoogle Scholar
  8. Burtt EH Jr, Ichida JM (2004) Gloger’s rule, feather-degrading bacteria, and color variation among song sparrows. Condor 106:681–686CrossRefGoogle Scholar
  9. Carroll MC, Prodeus AP (1998) Linkages of innate and adaptive immunity. Curr Opin Immunol 10:36–40CrossRefPubMedGoogle Scholar
  10. Cook MI, Beissinger SR, Toranzos GA, Rodríguez RA, Arendt WJ (2003) Trans-shell infection by pathogenic microorganisms reduces the shelf life of non-incubated bird’s eggs: a constraint on the onset of incubation? Proc R Soc Lond B 270:2233–2240CrossRefGoogle Scholar
  11. Cook MI, Beissinger SR, Toranzos GA, Rodríguez RA, Arendt WJ (2005) Microbial infection affects egg viability and incubation behavior in a tropical passerine. Behav Ecol 16:30–36CrossRefGoogle Scholar
  12. Cramp S, Perrins CM (ed) (1977–1994) The birds of the Western Palearctic. Vols 1–9. Oxford University Press, OxfordGoogle Scholar
  13. del Hoyo J, Elliott A, Sagartal J (eds) (1992–2008) Handbook of the birds of the world. Lynx, BarcelonaGoogle Scholar
  14. Donne-Goussé C, Laudet V, Hänni C (2002) A molecular phylogeny of Anseriiformes based on mitochondrial DNA analysis. Mol Phylogenet Evol 23:339–356CrossRefPubMedGoogle Scholar
  15. Elder WH (1954) The oil gland of birds. Wilson Bull 66:6–31Google Scholar
  16. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15CrossRefGoogle Scholar
  17. Fineblum WL, Rausher MD (1995) Trade-off between resistance and tolerance to herbivore damage in a morning glory. Nature 377:517–520CrossRefGoogle Scholar
  18. Galván I, Barba E, Piculo R, Cantó JL, Cortés V, Monrós JS, Atiénzar F, Proctor H (2008) Feather mites and birds: an interaction mediated by uropygial gland size? J Evol Biol 21:133–145PubMedGoogle Scholar
  19. Garamszegi LZ, Erritzøe J, Møller AP (2007) Feeding innovations and immune defense in birds. Biol J Linn Soc 90:441–455CrossRefGoogle Scholar
  20. Garland T Jr, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32Google Scholar
  21. Glick B (1983) Bursa of Fabricius. In: Farner DS, King JR (eds) Avian biology, vol 7. Academic Press, New York, pp 443–500Google Scholar
  22. Glick B (1994) The bursa of Fabricius: the evolution of a discovery. Poult Sci 73:979–983PubMedGoogle Scholar
  23. Griffiths CS, Barrowclough GF, Groth JG, Mertz LA (2007) Phylogeny, diversity, and classification of the Accipitridae based on DNA sequences of the RAG-1 exon. J Avian Biol 38:587–602Google Scholar
  24. Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han K-L, Harshman J, Huddleton CJ, Marks BD, Miglia KJ, Moore WA, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768CrossRefPubMedGoogle Scholar
  25. Hackstein JHP, van Alen TA (1996) Fecal methanogens and vertebrate evolution. Evolution 50:559–572CrossRefGoogle Scholar
  26. Hackstein JHP, Langer P, Rosenberg J (1996) Genetic and evolutionary constraints for the symbiosis between animals and methanogenic bacteria. Environ Monit Assess 42:39–56CrossRefGoogle Scholar
  27. Hart BJ (1990) Behavioral adaptations to pathogens and parasites: five strategies. Neurosci Biobehav Rev 14:273–294CrossRefPubMedGoogle Scholar
  28. Jacob J, Ziswiler V (1982) The uropygial gland. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol 6. Academic Press, New York, pp 199–324Google Scholar
  29. Janz N, Nylin S, Wahlberg N (2006) Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evol Biol 6:4CrossRefPubMedGoogle Scholar
  30. JMP (2000) JMP. SAS Institute, CaryGoogle Scholar
  31. Johnson KP, Clayton DH (2000) Nuclear and mitochondrial genes contain similar phylogenetic signal for pigeons and doves (Aves: Columbiformes). Mol Phylogenet Evol 14:141–151CrossRefPubMedGoogle Scholar
  32. Johnston DW (1988) A morphological atlas of the avian uropygial gland. Bull Br Mus Nat Hist (Zool) 54:199–259Google Scholar
  33. Jones KE, Purvis A (1997) An optimum body size for mammals? Comparative evidence from bats. Funct Ecol 11:751–756CrossRefGoogle Scholar
  34. Jønsson KA, Fjeldså J (2006) A phylogenetic supertree of oscine passerine birds (Aves: Passeri). Zool Scripta 35:149–186CrossRefGoogle Scholar
  35. Kennedy RJ (1971) Preen gland weights. Ibis 113:369–372CrossRefGoogle Scholar
  36. Kraaijeveld AR, van Alphen JM (1995) Foraging behavior and encapsulation ability of Drosophila melanogaster larvae: correlated polymorphisms? (Diptera: Drosophilidae). J Insect Behav 8:305–314CrossRefGoogle Scholar
  37. Krüger O, Sorenson MD, Davies NB (2009) Does coevolution promote species richness in parasitic cuckoos? Proc R Soc Lond B (in press)Google Scholar
  38. Krykanov A (1982) Lysozyme in egg white as an aid in evaluating egg fertility. Ptitsevodstvo 6:24–25Google Scholar
  39. Kudo S (2000) Enzymes responsible for the bactericidal effect in extracts of vitelline and fertilisation envelopes of rainbow trout eggs. Zygote 8:257–265CrossRefPubMedGoogle Scholar
  40. Lee KA, Wikelski M, Robinson WD, Robinson TR, Klasing KC (2008) Constitutive immune defences correlate with life-history variables in tropical birds. J Anim Ecol 77:356–363CrossRefPubMedGoogle Scholar
  41. Matson KD, Ricklefs RE, Klasing KC (2005) A hemolysis-hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Develop Comp Immunol 29:275–286CrossRefGoogle Scholar
  42. McCracken VJ, Lorenz RG (2001) The gastrointestinal ecosystem: a precarious alliance among epithelium, immunity and microbiota. Microrev Cell Microbiol 3:1–11CrossRefGoogle Scholar
  43. Melek OI (1977) The lysozyme content of egg protein in fowls and embryo mortality. Sbornik Nauk Mosk Vet Akad 92:71–74Google Scholar
  44. Møller AP, Haussy C (2007) Fitness consequences of variation in natural antibodies and complement in the barn swallow Hirundo rustica. Funct Ecol 21:363–371CrossRefGoogle Scholar
  45. Møller AP, Rózsa L (2005) Parasite biodiversity and host defenses: chewing lice and immune response of their avian hosts. Oecologia 142:169–176CrossRefPubMedGoogle Scholar
  46. Møller AP, Christe P, Garamszegi LZ (2005a) Coevolutionary arms races: increased host immune defense promotes specialization by avian fleas. J Evol Biol 18:46–59CrossRefPubMedGoogle Scholar
  47. Møller AP, Erritzøe J, Garamszegi LZ (2005b) Coevolution between brain size and immunity in birds: implications for brain size evolution. J Evol Biol 18:223–237CrossRefPubMedGoogle Scholar
  48. Møller AP, Garamszegi LZ, Spottiswoode C (2008) Genetic similarity, distribution range and sexual selection. J Evol Biol 21:213–225CrossRefPubMedGoogle Scholar
  49. Montalti D, Salibián A (2000) Uropygial gland size and avian habitat. Ornitol Neotrop 11:297–306Google Scholar
  50. Montalti D, Gutiérrez AM, Reboredo G, Salibián A (2005) The chemical composition of the uropygial gland secretion of rock dove Columba livia. Comp Biochem Physiol A 140:275–279CrossRefGoogle Scholar
  51. Moore J (2002) Parasites and the behavior of animals. Oxford University Press, OxfordGoogle Scholar
  52. Moran NA (2006) Symbiosis. Curr Biol 16:R866–R871CrossRefPubMedGoogle Scholar
  53. Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H, Zinklernagel RM (1999) Control of early viral and bacterial distribution and disease by natural antibodies. Science 286:2156–2159CrossRefPubMedGoogle Scholar
  54. Oka N, Okuyama M (2000) Nutritional status of dead oiled rhinoceros auklets (Cerorhinca monocerata) in the Southern Japanese Sea. Mar Pollut Bull 40:340–347CrossRefGoogle Scholar
  55. Price PD, Hellenthal RA, Palma RL (2003) World checklist of chewing lice with host associations and keys to families and genera. In: Price RD, Hellenthal RA, Palma RL, Johnson KP, Clayton DH (eds) The chewing lice: world checklist and biological overview. INHS special publication 24. Illinois Natural History Survey, IllinoisGoogle Scholar
  56. Proctor H (2003) Feather mites (Acari: Astigmata): ecology, behavior, and evolution. Annu Rev Entomol 48:185–209CrossRefPubMedGoogle Scholar
  57. Prusinowska I, Jankowski J (1996) The relationship between serum lysozyme activity and reproductive performance in turkeys. J Anim Feed Sci 5:395–401Google Scholar
  58. Purvis A, Rambaut A (1995) Comparative analysis by independent contrasts (CAIC). Comp Appl Biosci 11:247–251PubMedGoogle Scholar
  59. Reid RR, Prodeus AP, Kahn W, Hsu T, Rosen FS, Carroll MC (1997) Endotoxin shock in antibody-deficient mice: unravelling the role of natural antibody and complement in clearance of lipopolysaccharide. J Immunol 159:970–975PubMedGoogle Scholar
  60. Rékási J, Kiss JB (1977) Beiträge zur Kenntnis der Federlinge (Mallophaga) der Vögel Nord-Dobrudschas (Rumänien). Parasitol Hung 10:96–116Google Scholar
  61. Riley MA, Wertz JE (2002) Bacteriocines: evolution, ecology, and application. Annu Rev Microbiol 56:117–137CrossRefPubMedGoogle Scholar
  62. Saino N, Martinelli R, Dall’Ara P, Møller AP (2002) Early maternal effects and antibacterial immune factors in the eggs, nestlings and adults of the barn swallow Hirundo rustica. J Evol Biol 15:735–743CrossRefGoogle Scholar
  63. Saino N, Martinelli R, Biard C, Gil D, Spottiswoode C, Rubolini D, Surai P, Møller AP (2007) Maternal immune factors and the evolution of secondary sexual characters. Behav Ecol 18:513–520CrossRefGoogle Scholar
  64. Sandilands V, Savory J, Powell K (2004) Preen gland function in layer fowls: factors affecting morphology and feather lipid levels. Comp Biochem Physiol A 137:217–225CrossRefGoogle Scholar
  65. Sato Y, Watanabe K (1976) Lysozyme in hen blood serum. Poultry Sci 55:1749–1756Google Scholar
  66. Shawkey MD, Pillai SR, Hill GE (2003) Chemical warfare? Effects of uropygial oil on feather-degrading bacteria. J Avian Biol 34:345–349CrossRefGoogle Scholar
  67. Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds, a study in molecular evolution. Yale University Press, New HavenGoogle Scholar
  68. Sibley CG, Monroe BL Jr (1990) Distribution and taxonomy of birds of the World. Yale University Press, LondonGoogle Scholar
  69. Soler JJ, Soler M, Pérez-Contreras T, Aragon S, Møller AP (1999) Antagonistic anti-parasite defenses: nest defense and egg rejection in the magpie host of the great spotted cuckoo. Behav Ecol 10:707–713CrossRefGoogle Scholar
  70. Soler JJ, Martin-Vivaldi M, Haussy C, Møller AP (2007) Intra- and interspecific relationships between nest size and immunity. Behav Ecol 18:781–791CrossRefGoogle Scholar
  71. Spottiswoode C, Møller AP (2004) Genetic similarity and hatching success in birds. Proc R Soc Lond B 271:267–272CrossRefGoogle Scholar
  72. Thomas GH, Wills MA, Székely T (2004) A supertree approach to shorebird phylogeny. BMC Evol Biol 4:28CrossRefPubMedGoogle Scholar
  73. Toivanen P, Toivanen A (1987) Avian immunology: basis and practice. CRC Press, Boca RatonGoogle Scholar
  74. Vas Z, Csörgö T, Møller AP, Rózsa L (2008) The feather holes on the barn swallow Hirundo rustica and other small passerines are probably caused by Brueelia spp. lice. J Parasitol 94:1438–1440CrossRefPubMedGoogle Scholar
  75. Wakelin D (1996) Immunity to parasites: how parasitic infections are controlled. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Anders Pape Møller
    • 1
    • 2
  • Johannes Erritzøe
    • 3
  • Lajos Rózsa
    • 4
  1. 1.Laboratoire D’Ecologie, Systématique et Evolution, CNRS UMR 8079Université Paris-SudOrsay CedexFrance
  2. 2.Center for Advanced StudyOsloNorway
  3. 3.Taps Old RectoryChristiansfeldDenmark
  4. 4.Animal Ecology Research GroupHungarian Academy of Sciences, Hungarian Natural History MuseumBudapestHungary

Personalised recommendations