Oecologia

, Volume 162, Issue 4, pp 853–863 | Cite as

Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients

  • Yuan Zhu
  • Rolf T. W. Siegwolf
  • Walter Durka
  • Christian Körner
Physiological ecology - Original Paper

Abstract

We tested three hypotheses related to the functioning of mountain plants, namely their reproductive effort, leaf surface structure and effectiveness of CO2 assimilation, using archive material from contrasting elevations. Analysis of elevational trends is at risk of suffering from two major biases: a phylogenetic bias (i.e. an elevational change in the abundance of taxonomic groups), and covariation of different environmental drivers (e.g. water, temperature, atmospheric pressure), which do not permit a mechanistic interpretation. We solved both problems in a subcontinental survey of elevational trends in key plant traits in the European Alps and the high Arctic (northern Sweden, Svalbard), using herbarium samples of 147 species belonging to the genera Carex, Saxifraga and Potentilla. We used both species and phylogenetically independent contrasts as data points. The analysis revealed enhanced reproductive efforts at higher elevation in insect-pollinated taxa (not in wind-pollinated taxa), no increase in leaf pubescence at high elevation (as is often assumed), and a strong correlation between 13C discrimination and elevation. Alpine taxa operate at a smaller mesophyll resistance to CO2 uptake relative to diffusive resistance (stomata). By comparison with congeneric low altitude polar taxa (low temperature, but high atmospheric pressure), the response could be attributed to the elevational decline in atmospheric pressure rather than temperature (a mean increase in δ13C by 1.4‰ km−1). The signal is consistent within and across genera and within species, suggesting rapid adjustment of leaf physiology to reduced partial pressure of CO2. These results offer answers to long-debated issues of plant responses to high elevation life conditions.

Keywords

Elevation Atmospheric pressure Morphology Reproduction Temperature 

Supplementary material

442_2009_1515_MOESM1_ESM.doc (1 mb)
Supplementary material (Figs. 1, 2; Table 1, 2) (DOC 1035 kb)

References

  1. Aeschimann D, Lauber K, Moser DM, Theurillat JP (2004) Flora alpina. Haupt, BernGoogle Scholar
  2. Diekmann M (2003) Species indicator values as an important tool in applied plant ecology—a review. Basic Appl Ecol 4:493–506CrossRefGoogle Scholar
  3. Durka W (2002) Phylogenie der Farn- und Blütenpflanzen Deutschlands. In: Klotz S, Kühn I, Durka W (eds) BIOLFLOR—Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Schriftenreihe für Vegetationskunde 38. Bundesamt für Naturschutz, Bonn, pp 75–91Google Scholar
  4. Ellenberg H (1974) Zeigerwerte der Gefasspflanzen Mitteleuropas. Scripta Geobot 9:5–97Google Scholar
  5. Fabbro T, Körner C (2004) Altitudinal differences in inflorescence traits and reproductive allocation. Flora 199:70–81Google Scholar
  6. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137Google Scholar
  7. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15CrossRefGoogle Scholar
  8. Francey RJ, Allison CE, Etheridge DM, Trudinger CM, Enting IG, Leuenberger M, Langenfelds RL, Michel E, Steele LP (1999) A 1,000-year high precision record of δ13C in atmospheric CO2. Tellus Ser B-Chem Phys Meteorol 51:170–193CrossRefGoogle Scholar
  9. Gittleman JL, Kot M (1990) Adaptation: statistics and a null model for estimating phylogenetic effects. Syst Zool 39:227–241CrossRefGoogle Scholar
  10. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, OxfordGoogle Scholar
  11. Helliker BR, Richter SL (2008) Subtropical to boreal convergence of tree-leaf temperatures. Nature 454:511–514CrossRefPubMedGoogle Scholar
  12. Keeling CD (1979) The Suess effect: 13Carbon-14Carbon interrelations. Environ Int 2:229–300Google Scholar
  13. Körner C (2003) Alpine plant life, 2nd edn. Springer, BerlinGoogle Scholar
  14. Körner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574CrossRefPubMedGoogle Scholar
  15. Körner C, De Moraes JAPV (1979) Water potential and diffusion resistance in alpine cushion plants on clear summerdays. Oecol Plant 14:109–120Google Scholar
  16. Körner C, Diemer M (1987) In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Funct Ecol 1:179–194CrossRefGoogle Scholar
  17. Körner C, Farquhar GD, Roksandic Z (1988) A global survey of carbon isotope discrimination in plants from high altitude. Oecologia 74:623–632CrossRefGoogle Scholar
  18. Körner C, Neumayer M, Menendez-Riedl SP, Smeets-Scheel A (1989) Functional morphology of mountain plants. Flora 182:353–383Google Scholar
  19. Körner C, Farquhar GD, Wong SC (1991) Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88:30–40CrossRefGoogle Scholar
  20. Körner C, Donoghue M, Fabbro T, Häuser C, Nogues-Bravo D, Kalin Arroyo MT, Soberon J, Speers, Spehn EM, Sun H, Tribsch A, Tykarski P, Zbinden N (2007) Creative use of mountain biodiversity databases: the Kazbegi research agenda of GMBA-DIVERSITAS. Mt Res Dev 27:276–281CrossRefGoogle Scholar
  21. Kühn I, Bierman SM, Durka W, Klotz S (2006) Relating geographical variation in pollination types to environmental and spatial factors using novel statistical methods. New Phytol 172:127–139CrossRefPubMedGoogle Scholar
  22. Landolt E (1977) Ökologische Zeigerwerte zur Schweizer Flora. Veröff Geobot Inst ETH (Rübel) 64(1–28):126–127Google Scholar
  23. Michalski SG, Durka W (2009) Pollination mode and life form strongly affect the relation between mating system and pollen to ovule ratios. New Phytol 183:470–479CrossRefGoogle Scholar
  24. Paradis E (2006) Analysis of phylogenetics and evolution with R. Springer, New YorkGoogle Scholar
  25. Pluess AR, Schütz W, Stöcklin J (2005) Seed weight increases with altitude in the Swiss Alps between related species but not among populations of individual species. Oecologia 144:55–61CrossRefPubMedGoogle Scholar
  26. Prinzing A, Durka W, Klotz S, Brandl R (2001) The niche of higher plants: evidence for phylogenetic conservatism. Proc R Soc B Biol Sci 268:2383–2389CrossRefGoogle Scholar
  27. Rundel PW, Ehleringer JR, Nagy KA (1988) Stable isotopes in ecological research. Ecological studies, vol 68. Springer, New YorkGoogle Scholar
  28. Saurer M, Siegwolf RTW (2007) Human impacts on tree-ring growth reconstructed from stable isotopes. In: Dawson TE, Siegwolf RTW (eds) Stable isotopes as indicators of ecological change terrestrial ecology series. Elsevier, Amsterdam, pp 49–62CrossRefGoogle Scholar
  29. Saurer M, Cherubini P, Reynolds-Henne CE, Treydte KS, Anderson WT, Siegwolf RTW (2008) An investigation of the common signal in tree-ring stable isotope chronologies at temperate sites. J Geophys Res Biogeosci 113:G04035CrossRefGoogle Scholar
  30. Smith WK, Geller GN (1979) Plant transpiration at high elevations: theory, field measurements, and comparisons with desert plants. Oecologia 41:109–122CrossRefGoogle Scholar
  31. Spehn E, Körner C (2009) Data mining for global trends in mountain biodiversity. CRC, Taylor and Francis, LondonCrossRefGoogle Scholar
  32. Terashima I, Masuzawa T, Ohba H, Yokoi Y (1995) Is photosynthesis suppressed at higher elevations due to low CO2 pressure? Ecology 76:2663–2668CrossRefGoogle Scholar
  33. Werner RA, Bruch BA, Brand WA (1999) ConFlo III—an interface for high precision δ13C and δ15 N analysis with an extended dynamic range. Rapid Commun Mass Spectrom 13:1237–1241CrossRefPubMedGoogle Scholar
  34. Westoby M (1999) Generalization in functional plant ecology: The species sampling problem, plant ecology strategy schemes, and phylogeny. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Dekker, New York, pp 847–872Google Scholar
  35. Yang Y, Körner C, Sun H (2008) The ecological significance of pubescence in Saussurea medusa, a high-elevation Himalayan “woolly plant”. Arct Antarct Alp Res 40:250–255CrossRefGoogle Scholar
  36. Zhao ZG, Du GZ, Zhou XH, Wang MT, Ren QJ (2006) Variations with altitude in reproductive traits and resource allocation of three Tibetan species of Ranunculaceae. Aust J Bot 54:691–700CrossRefGoogle Scholar
  37. Zhu Y, Jiang Y, Liu Q, Kang M, Spehn EM, Körner C (2009) Elevational trends of biodiversity and plant traits do not converge-a test in the Helan Range, NW China. Plant Ecol 205:273–283CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Yuan Zhu
    • 1
  • Rolf T. W. Siegwolf
    • 2
  • Walter Durka
    • 3
  • Christian Körner
    • 4
  1. 1.School of Environment and Natural ResourcesRenmin University of ChinaBeijingPeople’s Republic of China
  2. 2.Paul Scherrer InstituteVilligenSwitzerland
  3. 3.Department of Community Ecology (BZF)UFZ, Helmholtz Centre for Environmental Research - UFZHalleGermany
  4. 4.Institute of BotanyUniversity of BaselBaselSwitzerland

Personalised recommendations