Oecologia

, Volume 162, Issue 4, pp 825–835

Carotenoid-based plumage colouration is associated with blood parasite richness and stress protein levels in blue tits (Cyanistes caeruleus)

  • Sara del Cerro
  • Santiago Merino
  • Josué Martínez-de la Puente
  • Elisa Lobato
  • Rafael Ruiz-de-Castañeda
  • Juan Rivero-de Aguilar
  • Javier Martínez
  • Judith Morales
  • Gustavo Tomás
  • Juan Moreno
Physiological ecology - Original paper

Abstract

Carotenoids are molecules that birds are not able to synthesize and therefore, must be acquired through their diet. These pigments, besides their function of giving birds red and yellow colouration when deposited in feathers, seem to act as immune-stimulators and antioxidants in the organism. Hence, only the healthiest individuals would be able to express carotenoid-based ornaments to a larger extent without compromising the physiological functions of carotenoids. Various studies have reported that birds infected by parasites are paler than those uninfected, but, to our knowledge, none of them has assessed the possible effect of multiple infections by blood parasites on plumage colour. By comparing the yellow colour in the breast plumage of blue tits, Cyanistes caeruleus, between birds infected by different numbers of blood parasite genera, we found that those birds infected by more than one genus were paler than those parasitized just by one. In addition, we examined the potential role of carotenoid-based plumage colour of blue tits as a long-term indicator of other parameters of health status, such as body condition and immunoglobulin and heat shock protein (HSP) levels. Our results indicate that more brightly coloured birds had lower HSP70 levels than paler birds, but we did not find any significant association between colour and body condition or immunoglobulin levels. In addition, we found a positive significant association between Haemoproteus density of infection and HSP60 levels. Overall, these results support the role of carotenoid-based colours as indicators of health status in blue tits and show detrimental effects of parasitism on this character.

Keywords

Bird Health status Heat shock proteins Multiple infections Yellow breast 

References

  1. Alonso-Álvarez C, Bertrand S, Devevey G, Gaillard M, Prost J, Faivre B, Sorci G (2004) An experimental test of the dose-dependent effect of carotenoids and immune activation on sexual signals and antioxidant activity. Am Nat 164:651–659CrossRefPubMedGoogle Scholar
  2. Amundsen T (2000) Why are females birds ornamented? Trends Ecol Evol 15:149–155CrossRefPubMedGoogle Scholar
  3. Andersson S, Prager M (2005) Quantifying colors. In: Hill GE, McGraw KJ (eds) Bird coloration, vol 1. Mechanism and measurements. Harvard University Press, Cambridge, pp 41–89Google Scholar
  4. Arriero E, Fargallo JA (2006) Habitat structure is associated with the expression of carotenoid-based coloration in nestling blue tits, Parus caeruleus. Naturwissenschaften 93:173–180CrossRefPubMedGoogle Scholar
  5. Arriero E, Møller AP (2008) Host ecology and life-history traits associated with blood parasite species richness in birds. J Evol Biol 21:1504–1513CrossRefPubMedGoogle Scholar
  6. Arriero E, Moreno J, Merino S, Martínez J (2008) Habitat effects on physiological stress response in nestling blue tits are mediated through parasitism. Physiol Biochem Zool 81:195–203CrossRefPubMedGoogle Scholar
  7. Beadell JS, Gering E, Austin J, Dumbacher JP, Peirce MA, Pratt TK, Atkinson CT, Fleischer RC (2004) Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region. Mol Ecol 13:3829–3844CrossRefPubMedGoogle Scholar
  8. Brawner WR III, Hill GE, Sundermann CA (2000) Effects of coccidial and mycoplasmal infections on carotenoid-based plumage pigmentation in male house finches. Auk 117:952–963CrossRefGoogle Scholar
  9. Chew BP (1993) Role of carotenoids in the immune response. J Dairy Sci 76:2804–2811PubMedCrossRefGoogle Scholar
  10. Clayton DH (1990) Mate choice in experimentally parasitized Rock Doves: lousy males lose. Am Zool 30:251–262Google Scholar
  11. Clayton DH (1991) The influence of parasites on host sexual selection. Parasitol Today 7:329–334CrossRefPubMedGoogle Scholar
  12. Costantini D, Møller AP (2008) Carotenoids are minor antioxidants for birds. Funct Ecol 22:367–370CrossRefGoogle Scholar
  13. Cramp S (1998) The complete birds of the western palearctic. CD-ROM. Oxford University Press, OxfordGoogle Scholar
  14. Davidar P, Morton ES (2006) Are multiple infections more severe for purple martins (Progne subis) than single infections? Auk 123:141–147CrossRefGoogle Scholar
  15. de Roode JC, Helinski MEH, Anwar MA, Read AF (2005) Dynamics of multiple infection and within-host competition in genetically diverse malaria infections. Am Nat 166:531–542CrossRefPubMedGoogle Scholar
  16. Deerenberg C, Apanius V, Daan S, Bos N (1997) Reproductive effort decreases antibody responsiveness. Proc R Soc Lond B Biol Sci 264:1021–1029CrossRefGoogle Scholar
  17. Doutrelant C, Grégoire A, Grnac N, Gómez D, Lambrechts MM, Perret P (2008) Female coloration indicates female reproductive capacity in blue tits. J Evol Biol 21:226–233PubMedGoogle Scholar
  18. Dufva R, Allander K (1995) Intraspecific variation in plumage coloration reflects immune-response in Great Tit (Parus major) males. Funct Ecol 9:785–789CrossRefGoogle Scholar
  19. Evans M, Otter A (1998) Fatal combined infection with Haemoproteus noctuae and Leucocytozoon ziemanni in juvenile snowy owls (Nyctea scandiaca). Vet Rec 143:72–76PubMedGoogle Scholar
  20. Ferns PN, Hinsley SA (2008) Carotenoid plumage hue and chroma signal different aspects of individual and habitat quality in tits. Ibis 150:152–159Google Scholar
  21. Figuerola J, Senar JC, Pascual J (1999) The use of a colorimeter in field studies of blue tit Parus caeruleus coloration. Ardea 87:269–275Google Scholar
  22. Fitze PS, Tschirren B, Gasparini J, Richner H (2007) Carotenoid-based plumage colors and immune function: is there a trade-off for rare carotenoids? Am Nat 169:S137–S144CrossRefPubMedGoogle Scholar
  23. Frank SA (1996) Models of parasite virulence. Q Rev Biol 71:37–78CrossRefPubMedGoogle Scholar
  24. Garbe TR (1992) Heat shock proteins and infection: interactions of pathogen and hosts. Experientia 48:635–639CrossRefPubMedGoogle Scholar
  25. Gehring WJ, Wehner R (1995) Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert. Proc Natl Acad Sci USA 92:2994–2998CrossRefPubMedGoogle Scholar
  26. Goodwin TW (1984) The biochemistry of the carotenoids, vol 2. Animals. Chapman and Hall, LondonGoogle Scholar
  27. Graham AL, Lamb TJ, Read AF, Allen JE (2005) Malaria-filaria co-infection in mice makes malarial disease more severe unless filarial infection achieves patency. J Infect Dis 191:410–421CrossRefPubMedGoogle Scholar
  28. Hadfield JD, Owens IPF (2006) Strong environmental determination of a carotenoid-based plumage trait is not mediated by carotenoid availability. J Evol Biol 19:1104–1114CrossRefPubMedGoogle Scholar
  29. Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387CrossRefPubMedGoogle Scholar
  30. Hartley RC, Kennedy MW (2004) Are carotenoids a red herring in sexual display? Trends Ecol Evol 19:353–354CrossRefPubMedGoogle Scholar
  31. Hidalgo-García S (2006) The carotenoid-based plumage coloration of adult blue tits Cyanistes caeruleus correlates with the health status of their brood. Ibis 148:727–734CrossRefGoogle Scholar
  32. Hill GE (1991) Plumage coloration is a sexually selected indicator of male quality. Nature 350:337–339CrossRefGoogle Scholar
  33. Hill GE (1992) Proximate basis of variation in carotenoid pigmentation in male house finches. Auk 109:1–12Google Scholar
  34. Hõrak P, Vellau H, Ots I, Møller AP (2000) Growth conditions affect carotenoid-based plumage coloration of great tit nestlings. Naturwissenschaften 87:460–464CrossRefPubMedGoogle Scholar
  35. Hõrak P, Ots I, Vellau H, Spottiswoode C, Møller AP (2001) Carotenoid-based plumage coloration reflects hemoparasite infection and local survival in breeding great tits. Oecologia 126:166–173CrossRefGoogle Scholar
  36. Hunt S, Bennett ATD, Cuthill IC, Griffiths R (1998) Blue tits are ultraviolet tits. Proc R Soc Lond B Biol Sci 265:451–455CrossRefGoogle Scholar
  37. Kraaijeveld K, Kraaijeveld-Smit FJL, Komdeur J (2007) The evolution of mutual ornamentation. Anim Behav 74:657–677CrossRefGoogle Scholar
  38. Lande R (1980) Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34:292–305CrossRefGoogle Scholar
  39. Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121Google Scholar
  40. Lozano GA (1994) Carotenoids, parasites, and sexual selection. Oikos 70:309–311CrossRefGoogle Scholar
  41. MacDougall AK, Montgomerie R (2003) Assortative mating by carotenoid-based plumage colour: a quality indicator in American goldfinches, Carduelis tristis. Naturwissenschaften 90:464–467CrossRefPubMedGoogle Scholar
  42. Mariño F, Winters C, Morgan AJ (1999) Heat shock protein (hsp60, hsp70, hsp90) expression in earthworms exposed to metal stressors in the field and laboratory. Pedobiologia 43:615–624Google Scholar
  43. Martínez J, Pérez-Serrano J, Bernadina WE, Rodríguez-Caabeiro F (1999a) In vitro stress response to elevated temperature, hydrogen peroxide and mebendazole in Trichinella spiralis muscle larvae. Int J Parasitol 29:1457–1464CrossRefPubMedGoogle Scholar
  44. Martínez J, Pérez-Serrano J, Bernadina WE, Rodríguez-Caabeiro F (1999b) Influence of parasitization by Trichinella spiralis on the levels of heat shock proteins in rat liver and muscle. Parasitology 118:201–209CrossRefPubMedGoogle Scholar
  45. Martínez J, Pérez-Serrano J, Bernadina WE, Rodríguez-Caabeiro F (2001) Stress response to cold in Trichinella species. Cryobiology 43:293–302CrossRefPubMedGoogle Scholar
  46. Martínez J, Tomás G, Merino S, Arriero E, Moreno J (2003) Detection of serum immunoglobulins in wild birds by direct ELISA: a methodological study to validate the technique in different species using antichicken antibodies. Funct Ecol 17:700–706CrossRefGoogle Scholar
  47. Martínez-de la Puente J, Merino S, Tomás G, Moreno J, Morales J, Lobato E (2006) Are multiple gametocyte infections in malarial parasites an adaptation to ensure fertility? Parasitology 132:23–28CrossRefPubMedGoogle Scholar
  48. Martínez-de la Puente J, Merino S, Moreno J, Tomás G, Morales J, Lobato E, García-Fraile S, Martínez J (2007a) Are eggshell spottiness and color indicators of health and condition in blue tits Cyanistes caeruleus? J Avian Biol 38:377–384Google Scholar
  49. Martínez-de la Puente J, Merino S, Tomás G, Moreno J, Morales J, Lobato E, García-Fraile S (2007b) Can the host immune system promote multiple invasions of erythrocytes in vivo? Differential effects of medication and host sex in a wild malaria-like model. Parasitology 134:651–655CrossRefPubMedGoogle Scholar
  50. Marzal A, Bensch S, Reviriego M, Balbontin J, de Lope F (2008) Effects of malaria double infections in birds: one plus one is not two. J Evol Biol 21:979–987CrossRefPubMedGoogle Scholar
  51. Maslov DA, Lukes J, Jirku M, Simpson L (1996) Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol Biochem Parasit 75:197–205CrossRefGoogle Scholar
  52. McGraw KJ, Ardia DR (2003) Carotenoids, immunocompetence, and the information content of sexual colors: an experimental test. Am Nat 162:704–712CrossRefPubMedGoogle Scholar
  53. McGraw KJ, Hill GE (2004) Plumage color as a dynamic trait: carotenoid pigmentation of male house finches (Carpodacus mexicanus) fades during the breeding season. Can J Zool 82:734–738CrossRefGoogle Scholar
  54. Merilä J, Sheldon BC, Lindström K (1999) Plumage brightness in relation to haematozoan infections in the greenfinch Carduelis chloris: bright males are a good bet. Ecoscience 6:12–18Google Scholar
  55. Merino S, Potti J, Fargallo JA (1997) Blood parasites of some passerine birds from central Spain. J Wildl Dis 33:638–641PubMedGoogle Scholar
  56. Merino S, Martínez J, Barbosa A, Møller AP, De Lope F, Pérez J, Rodríguez-Caabeiro F (1998) Increase in a heat shock protein from blood cells in response to parasitism of nestling house martins (Delichon urbica): an experimental approach. Oecologia 116:343–347CrossRefGoogle Scholar
  57. Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc R Soc Lond B Biol Sci 267:2507–2510CrossRefGoogle Scholar
  58. Merino S, Martínez J, Møller AP, Barbosa A, de Lope F, Rodríguez-Caabeiro F (2002) Blood stress protein levels in relation to sex and parasitism of barn swallows (Hirundo rustica). Ecoscience 9:300–305Google Scholar
  59. Merino S, Moreno J, Tomás G, Martínez J, Morales J, Martínez-De La Puente J, Osorno JL (2006) Effects of parental effort on blood stress protein HSP60 and immunoglobulins in female blue tits: a brood size manipulation experiment. J Anim Ecol 75:1147–1153CrossRefPubMedGoogle Scholar
  60. Merino S, Moreno J, Vásquez RA, Martínez J, Sánchez-Monsálvez I, Estades CF, Ippi S, Sabat P, Rozzi R, Mcgehee S (2008) Haematozoa in forest birds from southern Chile: latitudinal gradients in prevalence and parasite lineage richness. Austral Ecol 33:329–340CrossRefGoogle Scholar
  61. Møller AP, Biard C, Blount JD, Houston DC, Ninni P, Saino N, Surai PF (2000) Carotenoid dependent signals: indicators of foraging efficiency, immunocompetence or detoxification ability? Avian Poult Biol Rev 11:137–159Google Scholar
  62. Moreno J, Sanz JJ, Arriero E (1999) Reproductive effort and T-lymphocyte cell-mediated immunocompetence in female pied flycatchers Ficedula hypoleuca. Proc R Soc Lond B Biol Sci 266:1105–1109CrossRefGoogle Scholar
  63. Moreno J, Lobato E, Morales J, Merino S, Martínez-De La Puente J, Tomás G (2008) Pre-laying nutrition mediates maternal effects on offspring immune capacity and growth in the pied flycatcher. Oecologia 156:727–735CrossRefPubMedGoogle Scholar
  64. Morimoto RI (1991) Heat shock: the role of transient inducible responses in cell damage, transformation, and differentiation. Cancer Cell 3:295–301Google Scholar
  65. Moseley P (2000) Stress proteins and the immune response. Immunopharmacology 48:299–302CrossRefPubMedGoogle Scholar
  66. Norris K, Evans MR (2000) Ecological immunology: life history trade-offs and immune defence in birds. Behav Ecol 11:19–26CrossRefGoogle Scholar
  67. Olson VA, Owens IPF (1998) Costly sexual signals: are carotenoids rare, risky or required? Trends Ecol Evol 13:510–514CrossRefGoogle Scholar
  68. Örnborg J (2002) Ultraviolet coloration and colour communication in blue tits, Parus caeruleus. Dissertation, Goteborg UniversityGoogle Scholar
  69. Pérez C, Lores M, Velando A (2008) The availability of nonpigmentary antioxidant affects red coloration in gulls. Behav Ecol 19:967–973CrossRefGoogle Scholar
  70. Read AF (1990) Parasites and evolution of host behavior. In: Barnard CJ, Behnke JM (eds) Parasitism and host behaviour. Taylor & Francis, London, pp 117–157Google Scholar
  71. Read AF, Taylor LH (2000) Within-host ecology of infectious diseases: patterns and consequences. In: Thompson RCA (ed) Molecular epidemiology of infectious diseases. Arnold, London, pp 59–75Google Scholar
  72. Roitt I, Brostoff J, Male D (1996) Immunology, 4th edn. Mosby, LondonGoogle Scholar
  73. Senar JC, Figuerola J, Pascual J (2002) Brighter yellow blue tits make better parents. Proc R Soc Lond B Biol Sci 269:257–261CrossRefGoogle Scholar
  74. Senar JC, Figuerola J, Domènech J (2003) Plumage coloration and nutritional condition in the great tit Parus major: the roles of carotenoids and melanins differ. Naturwissenschaften 90:234–237PubMedGoogle Scholar
  75. Senar JC, Negro JJ, Quesada J, Ruiz I, Garrido J (2008) Two pieces of information in a single trait? The yellow breast of the great tit (Parus major) reflects both pigment acquisition and body condition. Behaviour 145:1195–1210CrossRefGoogle Scholar
  76. Seutin G (1994) Plumage redness in redpoll finches does not reflect hemoparasitic infections. Oikos 70:280–286CrossRefGoogle Scholar
  77. Slagsvold T, Lifjeld JT (1985) Variation in plumage colour of the great tit Parus major in relation to habitat, season and food. J Zool 206:321–328Google Scholar
  78. Soler JJ, de Neve L, Pérez-Contreras T, Soler M, Sorci G (2002) Trade-off between immunocompetence and growth in magpies: an experimental study. Proc R Soc Lond B Biol Sci 270:241–248CrossRefGoogle Scholar
  79. Sørensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037CrossRefGoogle Scholar
  80. Sundberg J (1995) Parasites, plumage coloration and reproductive success in the yellowhammer, Emberiza citrinella. Oikos 74:331–339CrossRefGoogle Scholar
  81. Surai PF, Speake BK (1998) Distribution of carotenoids from the yolk to the tissues of the chick embryo. J Nutr Biochem 9:645–651CrossRefGoogle Scholar
  82. Surai PF, Speake BK, Sparks NHC (2001) Carotenoids in avian nutrition and embryonic development. 2. Antioxidant properties and discrimination in embryonic tissues. J Poult Sci 38:117–145CrossRefGoogle Scholar
  83. Svensson L (1992) Identification guide to european passerines, 4th edn. Svensson, StockholmGoogle Scholar
  84. Tomás G, Martínez J, Merino S (2004) Collection and analysis of blood samples to detect stress proteins in wild birds. J Field Ornithol 75:281–287Google Scholar
  85. Tomás G, Merino S, Martínez J, Moreno J, Sanz JJ (2005) Stress protein levels and blood parasite infection in blue tits (Parus caeruleus): a medication field experiment. Ann Zool Fenn 42:45–56Google Scholar
  86. Tomás G, Merino S, Moreno J, Morales J, Martínez-de la Puente J (2007) Impact of blood parasites on immunoglobulin level and parental effort: a medication field experiment on a wild passerine. Funct Ecol 21:125–133CrossRefGoogle Scholar
  87. Tomás G, Merino S, Martínez-de La Puente J, Moreno J, Morales J, Lobato E (2008) Determinants of abundance and effects of blood-sucking flying insects in the nest of a hole-nesting bird. Oecologia 156:305–312CrossRefPubMedGoogle Scholar
  88. Valkiūnas G (2005) Avian malaria parasites and other Haemosporidia. CRC, Boca RatonGoogle Scholar
  89. Valkiūnas G, Iezhova TA, Shapoval AP (2003) High prevalence of blood parasites in hawfinch Coccothraustes coccothraustes. J Nat Hist 37:2647–2652CrossRefGoogle Scholar
  90. von Schantz TV, Bensch S, Grahn M, Hasselquist D, Wittzell H (1999) Good genes oxidative stress and condition-dependent sexual signals. Proc R Soc Lond B Biol Sci 266:1–12CrossRefGoogle Scholar
  91. Weatherhead PJ (1990) Secondary sexual traits, parasites and polygyny in red-winged blackbirds Agelaius phoeniceus. Behav Ecol 1:125–130CrossRefGoogle Scholar
  92. Zuk M, Thornhill R, Ligon JD, Johnson K, Austad S, Ligon SH, Thornhill NW, Costin C (1990) The role of male ornaments and courtship behavior in female mate choice of red jungle fowl. Am Nat 136:459–473CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Sara del Cerro
    • 1
  • Santiago Merino
    • 1
  • Josué Martínez-de la Puente
    • 1
  • Elisa Lobato
    • 1
  • Rafael Ruiz-de-Castañeda
    • 1
  • Juan Rivero-de Aguilar
    • 1
  • Javier Martínez
    • 2
  • Judith Morales
    • 3
  • Gustavo Tomás
    • 4
  • Juan Moreno
    • 1
  1. 1.Departamento de Ecología EvolutivaMuseo Nacional de Ciencias Naturales (CSIC)MadridSpain
  2. 2.Departamento de Microbiología y Parasitología, Facultad de FarmaciaUniversidad de AlcaláAlcalá de HenaresSpain
  3. 3.Departamento de Ecoloxía e Bioloxía Animal, Facultade de CienciasUniversidade de VigoPontevedraSpain
  4. 4.Departamento de Ecología Evolutiva, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoMéxico, D.F.México

Personalised recommendations