, Volume 160, Issue 3, pp 483–492 | Cite as

Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae)

  • Jana Fredersdorf
  • Ruth Müller
  • Susanne Becker
  • Christian Wiencke
  • Kai Bischof
Physiological Ecology - Original Paper


To estimate the potential effects of climate change on polar marine macroalgae, studies on interactive stress effects of multiple climate-related parameters are essential. Interactions of temperature, radiation and salinity on two different life history stages of Alaria esculenta (L.) Greville from the Kongsfjord (Spitsbergen) were investigated for the first time within this study. Adult macroscopic sporophytes of A. esculenta were exposed to different temperatures between 4 and 21°C combined with artificial irradiation conditions [photosynthetically active radiation, ultraviolet (UV) radiation: UV-A/UV-B, first experiment] and with different salinities [34, 28, 20 practical salinity units (p.s.u.)¸ second experiment]. Effects of photosynthetic activity were determined by measuring variable chlorophyll fluorescence of photosystem II. Germination success of young microscopic zoospores of A. esculenta was studied under multifactorial stress. Zoospore suspensions were exposed to the three different salinities and irradiation conditions at four temperatures between 2 and 16°C. Overall, A. esculenta exhibited a highly stage-specific susceptibility towards the experimental treatments. In both experiments using sporophytes, photosynthetic activity showed significant temperature effects and only very few significant radiation and salinity effects. Microscopic stages of A. esculenta were shown to be more sensitive than the adult macroscopic stages, since germination capacity of zoospores was significantly affected by temperature and salinity changes, and interactions of both. These results suggest that multiple stress factors interact synergistically. Temperature seems to be a predominant environmental parameter for the kelp A. esculenta. Overall, A. esculenta proved to be relatively tolerant and adaptable to increasing temperature and UV radiation, as well as to diluted salinities, but only up to a specific limit.


Climate change Germination Life cycle Multiple stress Photosynthesis 


  1. ACIA (2005) Arctic Council and International Arctic Science Committee. Arctic climate impact assessment, Scientific report. Cambridge University Press, Cambridge, p 1042Google Scholar
  2. Alexieva V, Ivanov S, Sergiev I, Karanov E (2003) Interaction between stresses. Bulg J Plant Physiol (Special Issue):1–17Google Scholar
  3. Biebl R (1970) Vergleichende Untersuchungen zur Temperaturresistenz von Meeresalgen entlang der pazifischen Küste Nordamerikas. Protoplasma 69(1):61–83CrossRefGoogle Scholar
  4. Bischof K, Hanelt D, Tüg H, Karsten U, Brouwer PEM, Wiencke C (1998) Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol 20(6):388–395CrossRefGoogle Scholar
  5. Bischof K, Hanelt D, Wiencke C (1999) Acclimation of maximal quantum yield of photosynthesis in the brown alga Alaria esculenta under high light and UV radiation. Plant Biol 1:435–444CrossRefGoogle Scholar
  6. Bischof K, Peralta G, Kràbs G, Van de Poll WH, Pérez-Llopens JL, Breeman AM (2002) Effects of solar UV-B radiation on camopy structure of Ulva communities from southern Spain. J Exp Bot 53:2411–2421Google Scholar
  7. Bischof K, Gomez I, Molis M, Hanelt D, Karsten U, Lüder U, Roleda MY, Zacher K, Wiencke C (2006) Ultraviolet radiation shapes seaweed communities. Rev Environ Sci Biotechnol 5(2–3):141–166CrossRefGoogle Scholar
  8. Bischoff-Bäsmann B (1997) Temperature requirements and biogeography of marine macroalgae-adaptation of marine macroalgae to low temperatures. Rep Polar Res 245:134Google Scholar
  9. Coelho SM, Rijstenbil JW, Brown MT (2000) Impacts of anthropogenic stresses on the early development stages of seaweeds. J Aquat Ecosyst Stress Recovery 7(4):317–333CrossRefGoogle Scholar
  10. Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27(1):2–8CrossRefGoogle Scholar
  11. Dring MJ, Makarov V, Schoschina E, Lorenz M, Luening K (1996) Influence of ultraviolet-radiation on chlorophyll fluorescence and growth in different life-history stages of three species of Laminaria (Phaeophyta). Mar Biol 126(1):183–191CrossRefGoogle Scholar
  12. Fortes MD, Lüning K (1980) Growth rates of North Sea macroalgae in relation to temperature, irradiance and photoperiod. Helgol Meeresunters 34:15–29CrossRefGoogle Scholar
  13. Franklin LA, Forster RM (1997) The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur J Phycol 32(3):207–232Google Scholar
  14. Gómez I, Figueroa FL, Sousa-Pinto I, Viñegla B, Pérez-Rodríguez E, Maestre C, Coelho S, Felga A, Pereira R (2001) Effects of UV radiation and temperature on photosynthesis as measured by PAM fluorescence in the red alga Gelidium pulchellum (Turner) Kützing. Bot Mar 44(1):9–16CrossRefGoogle Scholar
  15. Hanelt D, Wiencke C, Nultsch W (1997) Influence of UV radiation on the photosynthesis of Arctic macroalgae in the field. J Photochem Photobiol B: Biol 38(1):40–47CrossRefGoogle Scholar
  16. Hanelt D, Tüg H, Bischof K, Groß C, Lippert H, Sawall T, Wiencke C (2001) Light regime in an Arctic fjord: a study related to stratospheric ozone depletion as a basis for determination of UV efffects on algal growth. Mar Biol 138(3):649–658CrossRefGoogle Scholar
  17. Hoffman JR, Hansen LJ, Klinger T (2003) Interactions between UV radiation and temperature limit inferences from single-factor experiments. J Phycol 39(2):268–272Google Scholar
  18. IPCC (2007) Intergovernmental panel on climate change. Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment. Cambridge University Press, Cambridge, p 996Google Scholar
  19. Karsten U (2007) Research note: salinity tolerance of Arctic kelps from Spitsbergen. Phycol Res 55(4):257–262CrossRefGoogle Scholar
  20. Kirst G (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 41:21–53CrossRefGoogle Scholar
  21. Lüning K (1990) Seaweeds. Their environment, biogeography, and ecophysiology. Wiley, New York, p 527Google Scholar
  22. Müller R, Wiencke C, Bischof K (2008) Interactive effects of UV radiation and temperature on microstages of Laminariales (Phaeophyceae) from the Arctic and North Sea. Climate Res (in press)Google Scholar
  23. Munda IM, Luening K (1977) Growth performance of Alaria esculenta off Helgoland. Helgol Wiss Meeresunters 29(3):311–314CrossRefGoogle Scholar
  24. Rautenberger R, Bischof K (2006) Impact of temperature on UV-susceptibility of two Ulva (Chlorophyta) species from Antarctic and Subantarctic regions. Polar Biol 29(11):988–996CrossRefGoogle Scholar
  25. Roleda MY, Hanelt D, Wiencke C (2005) Growth kinetics related to physiological parameters in young Saccorhiza dermatodea and Alaria esculenta sporophytes exposed to UV radiation. Polar Biol 28:539–549CrossRefGoogle Scholar
  26. Roleda MY, Hanelt D, Wiencke C (2006) Exposure to ultraviolet radiation delays photosynthetic recovery in Arctic kelp zoospores. Photosynth Res 88(3):311–322PubMedCrossRefGoogle Scholar
  27. Roleda MY, Wiencke C, Hanelt D, Bischof K (2007) Sensitivity of the early life stages of macroalgae from the Northern Hemisphere to ultraviolet radiation. Photochem Photobiol 83(4):851–862PubMedGoogle Scholar
  28. Russell G (1987) Spatial and environmental components of evolutionary change: interactive effects of salinity and temperature on Fucus vesiculosus as an example. Helgol Mar Res 41(3):371–376Google Scholar
  29. Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Ecol Stud Anal Synth 100:49–70Google Scholar
  30. Sokal R, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological researchGoogle Scholar
  31. Steinhoff FS, Wiencke C, Müller R, Bischof K (2008) Effects of ultraviolet radiation and temperature on the ultrastructure of zoospores of the brown macroalga Laminaria hyperborea. Plant Biol 10(3):388–397PubMedCrossRefGoogle Scholar
  32. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29(4):436–459Google Scholar
  33. Sundene O (1962) The implications of transplant and culture experiments on the growth and distribution of Alaria esculenta. Nytt Mag Bot 9:155–174Google Scholar
  34. Svendsen H, Beszczynska-Moeller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Oerbaeck JB, Bischof K, Papucci C, Zajaczkowski M, Attolini R, Bruland O, Wiencke C, Winther JG, Dallmann W (2002) The physical environment of Kongsfjord-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21(1):133–166CrossRefGoogle Scholar
  35. Swanson AK, Druehl LD (2000) Differential meiospore size and tolerance of ultraviolet light stress within and among kelp species along a depth gradient. Mar Biol 136(4):657–664CrossRefGoogle Scholar
  36. Thomas DN, Collins JC, Russell G (1988) Interactive effects of temperature and salinity upon net photosynthesis of Cladophora glomerata (L.) Kuetz. and C. rupestris (L.) Kuetz. Bot Mar 31(1):73–77Google Scholar
  37. tom Dieck (Bartsch) I (1993) Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales, Phaeophyta): ecological and biogeographical implications. Mar Ecol Prog Ser 100:253–264CrossRefGoogle Scholar
  38. Veliz K, Edding M, Tala F, Gomez I (2006) Effects of ultraviolet radiation on different life cycle stages of the south Pacific kelps Lessonia nigrescens and L. trabeculata (Laminariales, Phaeophytceae). Mar Biol 149(5):1015–1024CrossRefGoogle Scholar
  39. Widdowson TB (1971) A taxonomic revision of the genus Alaria Greville. Syesis 4:11–49Google Scholar
  40. Wiencke C (2004a) The coastal ecosystem of Kongsfjord, Svalbard. Synopsis of biological research performed at the Koldewey Station in the years 1991–2003. Alfred-Wegener Institut für Meeres- und Polarforschung, Reports on polar and marine researchGoogle Scholar
  41. Wiencke C, Bartsch I, Bischoff B, Peters AF, Breeman AM (1994) Temperature requirements and biogeography of Antarctic, Arctic and amphiequatorial seaweeds. Bot Mar 37(3):247–259CrossRefGoogle Scholar
  42. Wiencke C, Vögele B, Kovaltchouk NA, Hop H (2004b) Species composition and zonation of marine benthic macroalgae at Hansneset in Kongsfjord, Svalbard. In: Wiencke C (ed) The coastal ecosystem of Kongsfjord, Svalbard. Synopsis of biological research performed at the Koldewey Station in the years 1991–2003. Ber Polarforsch Meeresforsch 492:55–62Google Scholar
  43. Wiencke C, Roleda MY, Gruber A, Clayton MN, Bischof K (2006) Susceptibility of zoospores to UV radiation determines upper depth distribution limit of Arctic kelps: evidence through field experiments. J Ecol 94(2):455–463CrossRefGoogle Scholar
  44. Wiencke C, Clayton MN, Gómez I, Iken K, Lüder UH, Amsler CD, Karsten U, Hanelt D, Bischof K, Dunton K (2007a) Life strategy, ecophysiology and ecology of seaweeds in polar waters. Rev Environ Sci Biotechnol 6(1–3):95–126CrossRefGoogle Scholar
  45. Wiencke C, Lüder UH, Roleda MY (2007b) Impact of ultraviolet radiation on physiology and development of zoospores of the brown alga Alaria esculenta from Spitsbergen. Physiol Plant 130(4):601–612CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jana Fredersdorf
    • 1
    • 2
    • 3
  • Ruth Müller
    • 3
  • Susanne Becker
    • 1
    • 2
  • Christian Wiencke
    • 3
  • Kai Bischof
    • 1
    • 2
  1. 1.Department of Marine BotanyUniversity of BremenBremenGermany
  2. 2.Center for Tropical Marine EcologyBremenGermany
  3. 3.Section Seaweed BiologyAlfred Wegener Institute for Marine und Polar Research (AWI)BremerhavenGermany

Personalised recommendations