Oecologia

, Volume 160, Issue 2, pp 353–365

Summer temperature dependency of larch budmoth outbreaks revealed by Alpine tree-ring isotope chronologies

  • Anne Kress
  • Matthias Saurer
  • Ulf Büntgen
  • Kerstin S. Treydte
  • Harald Bugmann
  • Rolf T. W. Siegwolf
Global Change Ecology - Original Paper

Abstract

Larch budmoth (LBM, Zeiraphera diniana Gn.) outbreaks cause discernable physical alteration of cell growth in tree rings of host subalpine larch (Larix decidua Mill.) in the European Alps. However, it is not clear if these outbreaks also impact isotopic signatures in tree-ring cellulose, thereby masking climatic signals. We compared LBM outbreak events in stable carbon and oxygen isotope chronologies of larch and their corresponding tree-ring widths from two high-elevation sites (1800–2200 m a.s.l.) in the Swiss Alps for the period AD 1900–2004 against isotope data obtained from non-host spruce (Picea abies). At each site, two age classes of tree individuals (150–250 and 450–550 years old) were sampled. Inclusion of the latter age class enabled one chronology to be extended back to AD 1650, and a comparison with long-term monthly resolved temperature data. Within the constraints of this local study, we found that: (1) isotopic ratios in tree rings of larch provide a strong and consistent climatic signal of temperature; (2) at all sites the isotope signatures were not disturbed by LBM outbreaks, as shown, for example, by exceptionally high significant correlations between non-host spruce and host larch chronologies; (3) below-average July to August temperatures and LBM defoliation events have been coupled for more than three centuries. Dampening of Alps-wide LBM cyclicity since the 1980s and the coincidence of recently absent cool summers in the European Alps reinforce the assumption of a strong coherence between summer temperatures and LBM defoliation events. Our results demonstrate that stable isotopes in tree-ring cellulose of larch are an excellent climate proxy enabling the analysis of climate-driven changes of LBM cycles in the long term.

Keywords

Climate change Defoliation Dendrochronology European larch Stable isotopes 

References

  1. Adams JB, Mann ME, Ammann CM (2003) Proxy evidence for an El Nino-like response to volcanic forcing. Nature 426:274–278. doi:10.1038/nature02101 CrossRefGoogle Scholar
  2. Anderson RM, May RM (1980) Infectious-diseases and population-cycles of forest insects. Science 210:658–661. doi:10.1126/science.210.4470.658 PubMedCrossRefGoogle Scholar
  3. Anderson WT, Bernasconi SM, McKenzie JA, Saurer M (1998) Oxygen and carbon isotopic record of climatic variability in tree ring cellulose (Picea abies): an example from central Switzerland (1913–1995). J Geophys Res 103:31625–31636. doi:10.1029/1998JD200040 CrossRefGoogle Scholar
  4. Asshoff R, Hattenschwiler S (2006) Changes in needle quality and larch bud moth performance in response to CO2 enrichment and defoliation of treeline larches. Ecol Entomol 31:84–90. doi:10.1111/j.0307-6946.2006.00756.x CrossRefGoogle Scholar
  5. Auer I, Boehm R, Jurkovic A, Orlik A et al (2007) HISTALP—historical instrumental climatological surface time series of the greater Alpine region. Int J Climatol 27:17–46. doi:10.1002/joe.1377 Google Scholar
  6. Baltensweiler W (1993a) A contribution to the explanation of the larch bud moth cycle, the polymorphic fitness hypothesis. Oecologia 93:251–255. doi:10.1007/BF00317678 CrossRefGoogle Scholar
  7. Baltensweiler W (1993b) Why the larch bud moth cycle collapsed in the subalpine larch-cembran pine forests in the year 1990 for the first time since 1850. Oecologia 94:62–66. doi:10.1007/00317302 CrossRefGoogle Scholar
  8. Baltensweiler W, Rubli D (1999) Dispersal: an important driving force of the cycling population dynamics of the larch budmoth, Zeiraphera diniana Gn. In: Swiss Federal Institute for Forest Snow and Landscape Research (ed) Forest snow and landscape research, vol 74. Paul Haupt, Berne, p 153Google Scholar
  9. Baltensweiler W, Benz G, Bovey P, Delucchi V (1977) Dynamics of larch bud moth populations. Annu Rev Entomol 22:79–100. doi:10.1146/annurev.en.22.010177 CrossRefGoogle Scholar
  10. Baltensweiler W, Weber UM, Cherubini P (2008) Tracing the influence of larch-bud-moth insect outbreaks and weather conditions on larch tree-ring growth in Engadine (Switzerland). Oikos 117:161–172. doi:10.1111/j.2007.0030-1299.16117.x CrossRefGoogle Scholar
  11. Barbour MM, Roden JS, Farquhar GD, Ehleringer JR (2004) Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Peclet effect. Oecologia 138:426–435. doi:10.1007/s00442-003-1449-3 PubMedCrossRefGoogle Scholar
  12. Berryman AA (1996) What causes population cycles of forest Lepidoptera? Trends Ecol Evol 11:28–32. doi:10.1016/0169-5347(96)81066-4 CrossRefGoogle Scholar
  13. Biondi F, Waikul K (2004) DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311. doi:10.1016/j.cageo.2003.11.004 CrossRefGoogle Scholar
  14. Boettger T, Haupt M, Knöller K, Weise SM, Waterhouse JS et al (2007) Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O and nonexchangeable δ2H values in cellulose, sugar, and starch: an interlaboratory comparison. Anal Chem 79:4603–4612. doi:10.1021/ac0700023 Google Scholar
  15. Büntgen U, Esper J, Frank DC, Nicolussi K, Schmidhalter M (2005) A 1052-year tree-ring proxy for Alpine summer temperatures. Clim Dyn 25:141–153. doi:10.1007/s00382-005-0028-1 CrossRefGoogle Scholar
  16. Büntgen U, Bellwald I, Kalbermatten H, Schmidhalter M, Frank D, Freund H, Bellwald W, Neuwirth B, Nüsser M, Esper J (2006a) 700 years of settlement and building history in the Lötschental/Valais. Erdkunde 60:96–112Google Scholar
  17. Büntgen U, Frank DC, Niervergelt D, Esper J (2006b) Summer temperature variations in the European Alps, AD 755–2004. J Clim 19:5606–5623. doi:10.1175/JCLI3917.1 CrossRefGoogle Scholar
  18. Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880. doi:10.1002/joc.1216 CrossRefGoogle Scholar
  19. Ellsworth DS, Tyree MT, Parker BL, Skinner M (1994) Photosynthesis and water-use efficiency of sugar maple (Acer-Saccharum) in relation to pear thrips defoliation. Tree Physiol 14:619–632PubMedGoogle Scholar
  20. Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253. doi:10.1126/science.1066208 PubMedCrossRefGoogle Scholar
  21. Esper J, Büntgen U, Frank DC, Niervergelt D, Liebhold A (2007) 1200 years of regular outbreaks in alpine insects. Proc R Soc Lond B Biol Sci 274:671–679. doi:10.1098/rspb.2006.0191 CrossRefGoogle Scholar
  22. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137CrossRefGoogle Scholar
  23. Fischlin A (1982) Analyse eines Wald-Insekten-Systems: Der Subalpine Lärchen-Arvenwald un der Graue Lärchenwickler Zeiraphera diniana Gn. (Lepidoptera, Tortricidae). PhD thesis (number 6977). ETH, ZürichGoogle Scholar
  24. Frank D, Esper J (2005) Temperature reconstructions and comparisons with instrumental data from a tree-ring network for the European Alps. Int J Climatol 25:1437–1454Google Scholar
  25. Guiot J (1991) The bootstrapped response function. Tree Ring Bull 51:39–41Google Scholar
  26. Haavik LJ, Stephen FM, Fierke MK, Salisbury VB, Leavitt SW, Billings SA (2008) Dendrochronological parameters of northern red oak (Quercus rubra L. (Fagaceae)) infested with red oak borer (Enaphalodes rufulus (Haldeman) (Coleoptera: Cerambycidae)). For Ecol Manage 255:1501–1509. doi:10.1016/j.foreco.2007.11.005 CrossRefGoogle Scholar
  27. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurements. Tree Ring Bull 43:69–78Google Scholar
  28. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  29. Keel SG, Siegwolf RTW, Körner C (2006) Canopy CO2 enrichment permits tracing the fate of recently assimilated carbon in a mature deciduous forest. New Phytol 172:319–329. doi:10.1111/j.1469-8137.2006.01831.x PubMedCrossRefGoogle Scholar
  30. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732. doi:10.1111/j.1365-2699.2003.01043.x Google Scholar
  31. Kurz WA et al (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990. doi:10.1038/nature06777 PubMedCrossRefGoogle Scholar
  32. Leavitt SW, Long A (1986) Influence of site disturbance on δ13C isotopic time series from tree rings. In: Jacoby GC, Hornbeck JW (eds) Proc Int Symp Ecol Aspects Tree-ring Analysis. Marymount College, TarrytownGoogle Scholar
  33. Leavitt SW, Long A (1988) Stable carbon isotope chronologies from trees in the Southwestern United States. Glob Biogeochem Cycles 2:189–198CrossRefGoogle Scholar
  34. Leuenberger M (2007) To what extent can ice core data contribute to the understanding of plant ecological developments of the past? In: Dawson TE, Siegwolf RTW (eds) Stable isotopes as indicators of ecological change. Elsevier Academic Press, London, pp 211–233CrossRefGoogle Scholar
  35. Mattson WJ, Addy ND (1975) Phytophagous insects as regulators of forest primary production. Science 190:515–522Google Scholar
  36. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801. doi:10.1016/j.quascirev.2003.06.017 CrossRefGoogle Scholar
  37. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181 CrossRefGoogle Scholar
  38. Reynolds-Henne CE, Siegwolf RTW, Treydte KS, Esper J, Henne S, Saurer M (2007) Temporal stability of climate–isotope relationships in tree rings of oak and pine (Ticino, Switzerland). Glob Biogeochem Cycles 21:GB4009. doi:0.1029/2007GB002945 CrossRefGoogle Scholar
  39. Roden JS, Lin G, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64:21–35. doi:10.1016/S0016-7037(99)00195-7 CrossRefGoogle Scholar
  40. Rolland C, Baltensweiler W, Petitcolas V (2001) The potential for using Larix decidua ring widths in reconstructions of larch budmoth (Zeiraphera diniana) outbreak history: dendrochronological estimates compared with insect surveys. Trees Struct Funct 15:414–424. doi:10.1007/s004680100116 Google Scholar
  41. Saurer M, Siegwolf R (2004) Pyrolysis techniques for oxygen isotope analysis of cellulose. In: de Groot PA (ed) Handbook of stable isotope analytical techniques, vol 1. Elsevier, New York, pp 497–508CrossRefGoogle Scholar
  42. Saurer M, Cherubini P, Reynolds-Henne CE, Treydte KS, Anderson WT, Siegwolf RTW (2008) An investigation of the common signal in tree-ring stable isotope chronologies at temperate sites. J Geophys Res 113:G04035. doi:10.1029/2008JG000689
  43. Schweingruber FH (1985) Dendroecological zones in the coniferous forests of Europe. Dendrochronologia 3:67–75Google Scholar
  44. Schweingruber FH, Eckstein D, Serre-Bachet F, Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–38Google Scholar
  45. Simard S, Elhani S, Morin H, Krause C, Cherubini P (2008) Carbon and oxygen stable isotopes from tree-rings to identify spruce budworm outbreaks in the boreal forest of Québec. Chem Geol 252:80–87. doi:10.1016/j.chemgeo.2008.01.018 CrossRefGoogle Scholar
  46. Stahel W (2002) Statistische Datenanalyse: Eine Einführung für Naturwissenschaftler, 4th edn. Vieweg, WiesbadenGoogle Scholar
  47. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating (reprinted 1996). University of Arizona Press, TucsonGoogle Scholar
  48. Treydte KS, Schleser GH, Schweingruber FH, Winiger M (2001) The climatic significance of δ13C in subalpine spruces (Lötschental, Swiss Alps). Tellus B Chem Phys Meteorol 53:593–611. doi:10.1034/j.1600-0889.2001.530505.x Google Scholar
  49. Treydte K, Frank D, Esper J, Andreu L, Bednarz Z, Berninger F, Boettger T et al (2007) Signal strength and climate calibration of a European tree-ring isotope network. Geophys Res Lett 34:L24302. doi:10.1029/2007GL031106
  50. Turchin P, Wood SN, Ellner SP, Kendall BE, Murdoch WW et al (2003) Dynamical effects of plant quality and parasitism on population cycles of larch budmoth. Ecology 84:1207–1214. doi:10.1890/0012-9658(2003)084[1207:DEOPQA]2.0.CO;2
  51. Visser ME, Holleman LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc R Soc Lond B Biol Sci 268:289–294. doi:10.1098/rspb.2000.1363 CrossRefGoogle Scholar
  52. Weber UM (1997) Dendroecological reconstruction and interpretation of larch budmoth (Zeiraphera diniana) outbreaks in two central alpine valleys of Switzerland from 1470–1990. Trees Struct Funct 11:277–290. doi:10.1007/PL00009674 Google Scholar
  53. Weidner K, Helle G, Löffler J, Neuwirth B, Schleser GH (2006) Stable isotope and tree-ring width variations of larch affected by larch budmoth outbreaks. In: Haneca K, Verheyden A, Beeckman H, Gärtner H, Helle G, Schleser GH (eds) TRACE—tree rings in archaeology, climatology and ecology, vol 5. FZ Jülich, Jülich, pp 148–153Google Scholar
  54. Yakir D, DeNiro MJ, Ephrath JE (1990) Effects of water-stress on oxygen, hydrogen and carbon isotope ratios in two species of cotton plants. Plant Cell Environ 13:949–955. doi:10.1111/j.1365-3040.1990.tb01985.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Anne Kress
    • 1
  • Matthias Saurer
    • 1
  • Ulf Büntgen
    • 2
  • Kerstin S. Treydte
    • 2
  • Harald Bugmann
    • 3
  • Rolf T. W. Siegwolf
    • 1
  1. 1.Paul Scherrer InstitutVilligen PSISwitzerland
  2. 2.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  3. 3.Forest Ecology, Department of Environmental SciencesSwiss Federal Institute of Technology Zürich (ETH)ZurichSwitzerland

Personalised recommendations