Oecologia

, Volume 160, Issue 1, pp 1–8 | Cite as

Temperature is the key to altitudinal variation of phenolics in Arnica montana L. cv. ARBO

  • Andreas Albert
  • Vipaporn Sareedenchai
  • Werner Heller
  • Harald K. Seidlitz
  • Christian Zidorn
Physiological Ecology - Original Paper

Abstract

Plants in alpine habitats are exposed to many environmental stresses, in particular temperature and radiation extremes. Recent field experiments on Arnica montana L. cv. ARBO indicated pronounced altitudinal variation in plant phenolics. Ortho-diphenolics increased with altitude compared to other phenolic compounds, resulting in an increase in antioxidative capacity of the tissues involved. Factors causing these variations were investigated by climate chamber (CC) experiments focusing on temperature and ultraviolet (UV)-B radiation. Plants of A. montana L. cv. ARBO were grown in CCs under realistic climatic and radiation regimes. Key factors temperature and UV-B radiation were altered between different groups of plants. Subsequently, flowering heads were analyzed by HPLC for their contents of flavonoids and caffeic acid derivatives. Surprisingly, increased UV-B radiation did not trigger any change in phenolic metabolites in Arnica. In contrast, a pronounced increase in the ratio of B-ring ortho-diphenolic (quercetin) compared to B-ring monophenolic (kaempferol) flavonols resulted from a decrease in temperature by 5°C in the applied climate regime. In conclusion, enhanced UV-B radiation is probably not the key factor triggering shifts in the phenolic composition in Arnica grown at higher altitudes but rather temperature, which decreases with altitude.

Keywords

Asteraceae Chemical ecology Ultraviolet-B radiation Free radicals Antioxidants 

Notes

Acknowledgements

C. Zidorn thanks the Swarovski foundation for financial support. The authors thank Verena Schneeberger (Innsbruck) for technical assistance.

References

  1. Alonso-Amelot ME, Oliveros-Bastidas A, Calcagno-Pisarelli MP (2007) Phenolics and condensed tannins of high altitude Pteridium arachnoideum in relation to sunlight exposure, elevation, and rain regime. Biochem Syst Ecol 35:1–10CrossRefGoogle Scholar
  2. Bilger W, Rolland M, Nybakken L (2007) UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochem Photobiol Sci 6:190–195PubMedCrossRefGoogle Scholar
  3. Blumthaler M, Ambach W, Ellinger R (1997) Increase in solar UV radiation with altitude. J Photochem Photobiol B 39:130–134CrossRefGoogle Scholar
  4. Bornman JF, Reuber S, Cen YP, Weissenböck G (1997) Ultraviolet radiation as a stress factor and the role of protective pigments. In: Lumsden P (ed) Plants and UV-B: responses to environmental change. Cambridge University Press, Cambridge, pp 157–168Google Scholar
  5. Caldwell MM (1971) Solar ultraviolet radiation and the growth and development of higher plants. In: Giese AC (ed) Photophysiology, vol 6. Academic, London, pp 131–177Google Scholar
  6. Döhring T, Köfferlein M, Thiel S, Seidlitz HK (1996) Spectral shaping of artificial UV-B irradiation for vegetation stress research. J Plant Physiol 148:115–119Google Scholar
  7. Douglas JA, Smallfield BM, Burgess EJ, Perry NB, Anderson RE, Douglas MH, Glennie VL (2004) Sesquiterpene lactones in Arnica montana: a rapid analytical method and the effects of flower maturity and simulated mechanical harvesting on quality and yield. Planta Med 70:166–170PubMedCrossRefGoogle Scholar
  8. Ganzera M, Guggenberger M, Stuppner H, Zidorn C (2008) Altitudinal variation of secondary metabolite profiles in flowering heads of Matricaria chamomilla cv. BONA. Planta Med 74:453–457PubMedCrossRefGoogle Scholar
  9. Ibdah M, Krins A, Seidlitz HK, Heller W, Strack D, Vogt T (2002) Spectral dependence of flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation. Plant Cell Environ 25:1145–1154CrossRefGoogle Scholar
  10. Körner C (1999) Alpine plant life. Functional plant ecology of high mountain ecosystems. Springer, BerlinGoogle Scholar
  11. Markham KR, Ryan KG, Bloor SJ, Mitchell KA (1998a) An increase in the luteolin: apigenin ratio in Marchantia polymorpha on UV-B enhancement. Phytochemistry 48:791–794CrossRefGoogle Scholar
  12. Markham KR, Tanner GJ, Cassi-Lit M, Whitecross MI, Nayudu M, Mitchell KA (1998b) Possible protective role for 3′, 4′-dihydroxyflavones induced by enhanced UV-B in a UV-tolerant rice cultivar. Phytochemistry 49:1913–1919CrossRefGoogle Scholar
  13. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956PubMedCrossRefGoogle Scholar
  14. Ries G, Heller W, Puchta H, Sandermann H, Seidlitz HK, Hohn B (2000) Elevated UV-B radiation reduces genome stability in plants. Nature 406:98–101PubMedCrossRefGoogle Scholar
  15. Spitaler R, Schlorhaufer PD, Ellmerer EP, Merfort I, Bortenschlager S, Stuppner H, Zidorn C (2006) Altitudinal variation of secondary metabolite profiles in flowering heads of Arnica montana cv. ARBO. Phytochemistry 67:409–417PubMedCrossRefGoogle Scholar
  16. Spitaler R, Winkler A, Lins I, Yanar S, Stuppner H, Zidorn C (2008) Altitudinal variation of phenolic contents in flowering heads of Arnica montana cv. ARBO: a 3-year comparison. J Chem Ecol 34:369–375PubMedCrossRefGoogle Scholar
  17. Thiel S, Döhring T, Köfferlein M, Kosak A, Martin P, Seidlitz HK (1996) A phytotron for plant stress research: how far can artificial lighting compare to natural sunlight? J Plant Physiol 148:456–463Google Scholar
  18. Zidorn C, Stuppner H (2001) Evaluation of chemosystematic characters in the genus Leontodon. Taxon 50:115–133CrossRefGoogle Scholar
  19. Zidorn C, Schubert B, Stuppner H (2005) Altitudinal differences in the contents of phenolics in flowering heads of three members of the tribe Lactuceae (Asteraceae) occurring as introduced species in New Zealand. Biochem Syst Ecol 33:855–872CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Andreas Albert
    • 1
  • Vipaporn Sareedenchai
    • 2
  • Werner Heller
    • 3
  • Harald K. Seidlitz
    • 1
  • Christian Zidorn
    • 2
  1. 1.Abteilung Experimentelle Umweltsimulation, Institut für BodenökologieHelmholtz Zentrum München—Deutsches Forschungszentrum für Gesundheit und UmweltNeuherbergGermany
  2. 2.Abteilung Pharmakognosie, Institut für PharmazieUniversität InnsbruckInnsbruckAustria
  3. 3.Institut für Biochemische PflanzenpathologieHelmholtz Zentrum München—Deutsches Forschungszentrum für Gesundheit und UmweltNeuherbergGermany

Personalised recommendations