Oecologia

, Volume 159, Issue 3, pp 527–537

The effect of climate on masting in the European larch and on its specific seed predators

  • Benedicte N. Poncet
  • Philippe Garat
  • Stephanie Manel
  • Noëlle Bru
  • Jean-Marie Sachet
  • Alain Roques
  • Laurence Despres
Plant-Animal Interactions - Original Paper

Abstract

Masting is the intermittent production of large seed crops by a population of plants. Two main hypotheses have been proposed to explain masting. Variations in seed crop may result from stochastic climate factors (temperature, rainfall, etc.), and/or masting may be a plant evolutionary strategy to avoid specific seed predators. To determine the effect of climate on the annual pattern of cone production in the European larch (Larix decidua), we analyzed larch cone production from 1975 to 2005 at 20 sites in the French Alps, ranging from 1,300 to 2,100 m a.s.l. (on average 17 years per site were sampled). We examined the effects of mast seeding on the predation of larch cones by the dominant specific pre-dispersal seed predators, cone fly Strobilomyia spp. Larch cone production varied across the years and was spatially synchronized throughout the region. We constructed two models to explain seed production, one for sites at low (<1,800 m) and one for sites at high (≥1,800 m) altitudes, using partial least squares (PLS) regressions to detect across a large number of climate indices (306) the factors which best explain cone production. Monthly indices were more accurate descriptors than 4-month period indices. The predation rate was lower in high cone production years that followed low production years, supporting the predator satiation hypothesis. However, variable cone production explained only a small part of predation rates (45 and 25% at low and high altitudes, respectively). Predation was also directly affected by climate conditions. PLS regressions taking into account both cone production and climate factors accounted for as much as 68 and 82% of the predation rate variation at low and high altitudes, respectively. This study contributes to a better understanding of how climate factors differently affect the members of an interacting community.

Keywords

Masting Predator satiation Altitude Spatial synchrony Seed predation 

References

  1. Agresti A (2002) Categorical data analysis. Wiley, New YorkCrossRefGoogle Scholar
  2. Bastien P, Vinzi VE, Tenenhaus M (2005) PLS generalised linear regression. Comput Stat Data Anal 48:17–46CrossRefGoogle Scholar
  3. Boutin S, Wauters LA, McAdam AG, Humphries MM, Tosi G, Dhondt AA (2006) Anticipatory reproduction and population growth in seed predators. Science 314:1928–1930PubMedCrossRefGoogle Scholar
  4. Brockerhoff EG, Kenis M (1997) Oviposition, life cycle, and parasitoids of the spruce cone maggot, Strobilomyia anthracina (Diptera: anthomyiidae), in the Alps. Bull Entomol Res 87:555–562CrossRefGoogle Scholar
  5. Eggermont H, Heiri O, Verschuren D (2006) Fossil Chironomidae (Insecta: diptera) as quantitative indicators of past salinity in African lakes. Quart Sci Rev 25:1966–1994CrossRefGoogle Scholar
  6. Herrera CM, Jordano P, Guitian J, Traveset A (1998) Annual variability in seed production by woody plants and the masting concept: reassessment of principles and relationship to pollination and seed dispersal. Am Nat 152:576–594PubMedCrossRefGoogle Scholar
  7. Inouye DW (2000) The ecological and evolutionary significance of frost in the context of climate change. Ecol Lett 3:457–463CrossRefGoogle Scholar
  8. Janzen DH (1971) Seed predation by animals. Annu Rev Ecol Syst 2:465–492CrossRefGoogle Scholar
  9. Jenkins MJ, Roques A (1997) Impact of Strobilomyia spp. and Resseliella skuhravyorum on seeds of high elevation Larix decidua in the southern French Alps In: Proceedings of the 5th Cone and Seed Insects Working Party Conference (IUFRO S7.03–01) September 1996, Monte Bondone, ItalyGoogle Scholar
  10. Kelly D (1994) The evolutionary ecology of mast seeding. Trends Ecol Evol 9:465–470CrossRefGoogle Scholar
  11. Kelly D, Sork VL (2002) Mast seeding in perennial plants: why, how, where? Annu Rev Ecol Syst 33:427–447CrossRefGoogle Scholar
  12. Kelly D, Harrison AL, Lee WG, Payton IJ, Wilson PR, Schauber EM (2000) Predator satiation and extreme mast seedling in 11 species of Chionochloa (Poaceae). Oikos 90:477–488CrossRefGoogle Scholar
  13. Koenig WD, Knops JMH (1998) Scale of mast-seeding and tree-ring growth. Nature 396:225–226CrossRefGoogle Scholar
  14. Koenig WD, Knops JMH (2000) Patterns of annual seed production by northern hemisphere trees: a global perspective. Am Nat 155:59–69PubMedCrossRefGoogle Scholar
  15. Koenig WD, Knops JMH (2005) The mystery of masting in trees. Am Sci 93:340–347Google Scholar
  16. Kon H, Noda T, Terazawa K, Koyama H, Yasaka M (2005) Evolutionary advantages of mast seeding in Fagus crenata. J Ecol 93:1148–1155CrossRefGoogle Scholar
  17. Lamontagne JM, Boutin S (2007) Local-scale synchrony and variability in mast seed production patterns of Picea glauca. J Ecol 95:991–1000CrossRefGoogle Scholar
  18. Lazaro A, Traveset A, Mendez M (2006) Masting in Buxus balearica: assessing fruiting patterns and processes at a large spatial scale. Oikos 115:229–240CrossRefGoogle Scholar
  19. Maeto K, Ozaki K (2003) Prolonged diapause of specialist seed-feeders makes predator satiation unstable in masting of Quercus crispula. Oecologia 137:392–398PubMedCrossRefGoogle Scholar
  20. McKone MJ, Kelly D, Harrison AL, Sullivan JJ, Cone AJ (2001) Biology of insects that feed in the inflorescences of Chionochloa (Poaceae) in New Zealand and their relevance to mast seeding. NZ J Zool 28:89–101Google Scholar
  21. Mduma SAR, Sinclair ARE, Turkington ROY (2007) The role of rainfall and predators in determining synchrony in reproduction of savanna trees in Serengeti National Park, Tanzania. J Ecol 95:184–196CrossRefGoogle Scholar
  22. Michelsen V (1988) A world revision of Strobilomyia Gen-N—the Anthomyiid seed pests of conifers (Diptera, Anthomyiidae). Syst Entomol 13:271–314CrossRefGoogle Scholar
  23. Monks A, Kelly D (2006) Testing the resource-matching hypothesis in the mast seeding tree Nothofagus truncata (Fagaceae). Austral Ecol 31:366–375CrossRefGoogle Scholar
  24. Roques A (1988) The French cone fly in the French Alps. In: Berryman AA (ed) Dynamics of forest insect populations, chap 1. Plenum, New York, pp 1–28Google Scholar
  25. Roques A (1993) Impact of insects on natural regeneration of high altitude alpine forests In: Ecologia delle foreste d’alta quota Atti del XXX Corso di Cultura in Ecologia, pp 71–94Google Scholar
  26. Roques A, Martinez M, Delplanque A (1983) Les Diptères Anthomyiidae du genre Lasiomma Stein. ravageurs des cônes et graines de Mélèze d’Europe (Larix decidua Mill.) en France. Zeitschr Angew Entomol 95:429–439Google Scholar
  27. Roques A, Raimbault J-P, Delplanque A (1984) Les Diptères Anthomyiidae du genre Lasiomma Stein. ravageurs des cônes et graines de Mélèze d’Europe (Larix decidua Mill.) en France. Zeitschr Angew Entomol 98:350–367Google Scholar
  28. Sachet J-M, Roques A, Despres L (2006) Linking patterns and processes of species diversification in the cone flies Strobilomyia (Diptera: Anthomyiidae). Mol Phylogenet Evol 41:606–621PubMedCrossRefGoogle Scholar
  29. Sachet J-M, Poncet BN, Roques A, Despres L (2008) Adaptive radiation through phenological shift: the importance of the temporal niche in species diversification. Ecol Entomol. doi:10.1111/j.1365-2311.2008.01045.x
  30. Satake A, Bjørnstad NO, Kobro S (2004) Masting and trophic cascades: interplay between rowan trees, apple fruit moth, and their parasitoid in southern Norway. Oikos 104:540–550CrossRefGoogle Scholar
  31. Schauber EM et al (2002) Masting by eighteen New Zealand plant species: the role of temperature as a synchronizing cue. Ecology 83:1214–1225CrossRefGoogle Scholar
  32. Sullivan JJ, Kelly D (2000) Why is mast seeding in Chionochloa rubra (Poaceae) most extreme where seed predation is lowest? NZ J Bot 38:221–233Google Scholar
  33. Suzuki W, Osumi K, Masaki T (2005) Mast seeding and its spatial scale in Fagus crenata in northern Japan. For Ecol Manage 205:105–116CrossRefGoogle Scholar
  34. R Development Core Team (2006) R: a language and environment for statistical computing. Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, URL http://www.R-project.org
  35. Tenenhaus M (2005) La régression logistique PLS. In: Droesbeke JJ, Lejeune M, Saporta G (eds) Modèles statistiques pour données qualitatives. Technip, pp 263–276Google Scholar
  36. Turgeon JJ, Roques A, Groot P (1994) Insect fauna of coniferous seed cones: diversity, host plant interactions, and management. Annu Rev Entomol 39:179–212CrossRefGoogle Scholar
  37. Webb CJ, Kelly D (1993) The reproductive biology of the New Zealand flora. Trends Ecol Evol 8:442–447CrossRefGoogle Scholar
  38. Wold S, Ruhe A, Wold H, Dunn WJ (1984) The collinearity problem in linear regression: the partial least squares (PLS) approach to generalized inverses. J Sci Stat Comput 5:735–743CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Benedicte N. Poncet
    • 1
  • Philippe Garat
    • 2
  • Stephanie Manel
    • 1
  • Noëlle Bru
    • 3
  • Jean-Marie Sachet
    • 1
  • Alain Roques
    • 4
  • Laurence Despres
    • 1
  1. 1.Laboratoire d’Ecologie AlpineCNRS-UMR 5553, Université Joseph FourierGrenobleFrance
  2. 2.Laboratoire Jean KuntzmannUMR 5224, Université Pierre Mendès FranceGrenobleFrance
  3. 3.Laboratoire de Mathématiques AppliquéesCNRS-UMR 5142, Université de Pau et des pays de l’AdourPauFrance
  4. 4.Institut National de la Recherche AgronomiqueINRA-UR633OrléansFrance

Personalised recommendations