, Volume 156, Issue 3, pp 491–503 | Cite as

Relative importance of host plant patch geometry and habitat quality on the patterns of occupancy, extinction and density of the monophagous butterfly Iolana iolas

  • Sonia G. RabasaEmail author
  • David Gutiérrez
  • Adrián Escudero
Population Ecology - Original Paper


Habitat fragmentation is a major cause of species rarity and decline because it increases local population extinctions and reduces recolonisation rates of remnant patches. Although two major patch characteristics (area and connectivity) have been used to predict distribution patterns in fragmented landscapes, other factors can affect the occurrence of a species as well as the probability of it becoming extinct. In this paper, we study the spatial structure and dynamics of the butterfly Iolana iolas in a 75-patch network of its host plant (Colutea hispanica) to determine the relative importance of patch area, connectivity and habitat quality characteristics on occupancy, extinction and density over the period 2003–2006. Occupancy in 2003, incidence (proportion of years occupied) and probability of extinction were mostly affected by patch area. Smaller patches were less likely to be occupied because they had a higher probability of extinction, partly due to environmental stochasticity. The density of I. iolas was negatively related to patch area in all study years. Only in 2004 was the density of I. iolas positively influenced by fruit production per plant. Our results suggest that for I. iolas, and probably for other specialist butterflies with clearly delimited resource requirements, metapopulation dynamics can be satisfactorily predicted using only geometric variables because most habitat characteristics are subsumed in patch area. However, this hypothesis should be subject to further testing under diverse environmental conditions to evaluate the extent of its generalisation.


Iolana iolas Metapopulation Occupancy Patch quality 



We thank the Regional Government of Madrid for providing digital 1:5000 maps and permission for working with C. hispanica and I. iolas, and the Spanish National Meteorological Institute for thermopluviometric data. We also thank F. Carreño for help with the GIS software. This study was supported by a research grant from the Spanish Ministry of Education and Science to D. Gutiérrez (ref. BOS2002-00742), and a FPU predoctoral fellowship to S.G. Rabasa.


  1. Anonymous (1992) Decreto 18/1992, de 26 de marzo, por el que se aprueba el Catálogo Regional de Especies Amenazadas de Fauna y Flora Silvestres de la Comunidad de Madrid y creación de la categoría de árboles singulares. Boletín Oficial de la Comunidad de Madrid 85, MadridGoogle Scholar
  2. Bergman K (2001) Population dynamics and importance of habitat management for conservation of the butterfly Lopinga achine. J Appl Ecol 38:1303–1313CrossRefGoogle Scholar
  3. Bergman K, Landin J (2001) Distribution of occupied and vacant sites and migration of Lopinga achine (Nymphalidae: Satyrinae) in a fragmented landscape. Biol Conserv 102:183–190CrossRefGoogle Scholar
  4. Binzenhöfer B, Schröder B, Strauss B, Biedermann R, Settele J (2005) Habitat models and habitat connectivity analysis for butterflies and burnet moths—the example of Zygaena carniolica and Coenonympha arcania. Biol Conserv 126:247–259CrossRefGoogle Scholar
  5. Bowers MA, Matter SF (1997) Landscape ecology of mammals: relationships between density and patch size. J Mammal 78:999–1013CrossRefGoogle Scholar
  6. Brotons L, Mökkönen M, Martin JL (2003) Are fragments islands? Landscape context and density-area relationships in boreal forest birds. Am Nat 162:343–357PubMedCrossRefGoogle Scholar
  7. Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449CrossRefGoogle Scholar
  8. Cabeza M (2003) Habitat loss and connectivity of the reserve networks in probability approaches to reserve design. Ecol Lett 6:665–672CrossRefGoogle Scholar
  9. Connor EF, Courtney AC, Yoder JM (2000) Individuals-area relationships: the relationship between animal population density and area. Ecology 81:734–748Google Scholar
  10. Dennis RLH, Eales HT (1997) Patch occupancy in Coenonympha tullia (Müller, 1764) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and isolation. J Insect Conserv 1:167–176CrossRefGoogle Scholar
  11. Dennis RLH, Eales HT (1999) Probability of site occupancy in the large heath butterfly Coenonympha tullia determined from geographical an ecological data. Biol Conserv 87:295–301CrossRefGoogle Scholar
  12. Dennis RHL, Shreeve TG, Van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102:417–426CrossRefGoogle Scholar
  13. Dennis RHL, Shreeve TG, Van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966CrossRefGoogle Scholar
  14. Englund G, Hambäck P (2007) Scale dependence of immigration rates: models, metrics and data. J Anim Ecol 76:30–35PubMedCrossRefGoogle Scholar
  15. Fleishman E, Ray C, Sjögren-Gulve P, Boggs CL (2002) Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conserv Biol 16:706–716CrossRefGoogle Scholar
  16. Förare J, Solbreck C (1997) Population structure of a monophagous moth in a patchy landscape. Ecol Entomol 22:256–263CrossRefGoogle Scholar
  17. Gaston KJ, Matter SF (2002) Individuals-area relationships: comment. Ecology 83:288–293Google Scholar
  18. Gaston KJ, Balckburn TM, Gregory RD (1999) Does variation in census area confound density comparisons? J Appl Ecol 36:191–204CrossRefGoogle Scholar
  19. Gil TF (2001) Estudio sobre la influencia de parasitoides (Hymenoptera:Ichneumonoidea) en poblaciones del raro lepidóptero Iolana iolas Oschsenheimer, 1816 (Lepidoptera: Lycaenidae). Bol SEA 29:85–88Google Scholar
  20. González-Megías A, Gómez JM, Sánchez-Piñero F (2005) Regional dynamics of a patchily distributed herbivore along an altitudinal gradient. Ecol Entomol 30:706–713CrossRefGoogle Scholar
  21. Guisan AS, Weiss SB, Weiss AA (1999) GLM versus CCA spatial modelling of plant species distribution. Plant Ecol 143:107–122CrossRefGoogle Scholar
  22. Gyllenberg M, Hanski I, Hastings A (1997) Structured metapopulation models. In: Hanski I, Gilpin M (eds) Metapopulation biology: ecology, genetics and evolution. Academic Press, San Diego, pp 93–122Google Scholar
  23. Hambäck PA, Englund G (2005) Patch area, population density and the scaling of migration rates: the resource concentration hypothesis revisited. Ecol Lett 8:1057–1065CrossRefGoogle Scholar
  24. Hambäck PA, Summerville KS, Steffan-Dewenter I, Krauss J, Englund G, Crist TO (2007) Habitat specialization, body size, and family identity explain lepidopteran density-area relationships in a cross-continental comparison. Proc Natl Acad Sci USA 104:8368–8373PubMedCrossRefGoogle Scholar
  25. Hanski I (1989) Metapopulation dynamics: does it help to have more of the same? Trends Ecol Evol 4:113–114CrossRefGoogle Scholar
  26. Hanski I (1994a) Patch-occupancy dynamics in fragmented landscapes. Trends Ecol Evol 9:131–135CrossRefGoogle Scholar
  27. Hanski I (1994b) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162CrossRefGoogle Scholar
  28. Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  29. Hanski I, Gaggiotti OE (2004) Ecology, genetics, and evolution of metapopulations. Academic Press, AmsterdamGoogle Scholar
  30. Hanski I, Gilpin ME (1997) Metapopulation biology. Ecology, genetics and evolution. Academic Press, San DiegoGoogle Scholar
  31. Hanski I, Pöyry J, Pakkala T, Kuussaari M (1995) Multiple equilibria in metapopulation dynamics. Nature 377:618–621CrossRefGoogle Scholar
  32. Hanski I, Moilanen A, Pakkala T, Kuussaari M (1996) The quantitative incidence function model and persistence of an endangered butterfly metapopulation. Conserv Biol 10:578–590CrossRefGoogle Scholar
  33. Harrison S, Quinn JF (1989) Correlated environments and the persistence of metapopulations. Oikos 56:293–298CrossRefGoogle Scholar
  34. James M, Gilbert F, Zalat S (2003) Thyme and isolation for the sinai baton blue butterfly (Pseudophilotes sinaicus). Oecologia 134:445–453PubMedCrossRefGoogle Scholar
  35. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108PubMedCrossRefGoogle Scholar
  36. Kindvall O (1996) Habitat heterogeneity and survival in a bush cricket metapopulation. Ecology 77:207–214CrossRefGoogle Scholar
  37. Kindvall O, Ahlén I (1992) Geometrical factors and metapopulation dynamics of the bush cricket, Metripotera bicolor Philippi (Orthoptera:Tettigoniidae). Conserv Biol 6:520–529CrossRefGoogle Scholar
  38. Krauss J, Steffan-Dewenter I, Tscharntke T (2004) Landscape occupancy and local population size depends on host plant distribution in the butterfly Cupido minimus. Biol Conserv 120:359–365CrossRefGoogle Scholar
  39. Krauss J, Steffan-Dewenter I, Müller CB, Tscharntke T (2005) Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly. Ecography 28:465–474CrossRefGoogle Scholar
  40. Lee M, Fahrig L, Freemark K, Currie DJ (2002) Importance of patch scale vs landscape scale on selected forest birds. Oikos 96:110–118CrossRefGoogle Scholar
  41. Lei GC, Hanski I (1997) Metapopulation structure of Cotesia melitaearum, a specialist parasitoid of the butterfly Melitaea cinxia. Oikos 78:91–100CrossRefGoogle Scholar
  42. Liebhold A, Koenig WD, Bjørnstad ON (2004) Spatial synchrony in population dynamics. Annu Rev Ecol Evol S 35:467–490CrossRefGoogle Scholar
  43. MacArthur RH, Diamond JM, Karr JR (1972) Density compensation in island faunas. Ecology 53:330–342CrossRefGoogle Scholar
  44. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  45. Matter SF (2000) The importance of the relationship between population density and habitat area. Oikos 89:613–619CrossRefGoogle Scholar
  46. Matter SF, Roland J, Keyghobadi N, Sabourin K (2003) The effects of isolation, habitat area and resources on the abundance, density and movement of the butterfly Parnassius smintheus. Am Midl Nat 150:26–36CrossRefGoogle Scholar
  47. McCullough DR (1996) Metapopulations and wildlife conservation. Island Press, Washington D.C.Google Scholar
  48. Menéndez R, Thomas CD (2006) Can occupancy patterns be used to predict distributions in widely separated geographic regions? Oecologia 149:396–405PubMedCrossRefGoogle Scholar
  49. Moilanen A (2004) SPOMSIM: software for stochastic patch occupancy models of metapopulation dynamics. Ecol Model 179:533–550CrossRefGoogle Scholar
  50. Moilanen A, Hanski I (1998) Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79:2503–2515Google Scholar
  51. Munguira ML (1989) Biología y Biogeografía de los Licénidos Ibéricos en peligro de extinción (Lepidoptera: Lycaenidae) PhD thesis. Serv Publ Univ Autónoma de Madrid, MadridGoogle Scholar
  52. Munguira ML, Martín J (1993) The conservation of endangered lycaenid butterflies in Spain. Biol Conserv 66:17–22CrossRefGoogle Scholar
  53. Nowicki P, Pepkowska A, Kudlek J, Skórka P, Witek M, Settele J, Woyciechowski M (2007) From metapopulation theory to conservation recommendations: lessons from spatial occurrence and abundance patterns of Maculinea butterflies. Biol Conserv 140:119–129CrossRefGoogle Scholar
  54. Öckinger E (2006) Possible metapopulation structure of the threatened butterfly Pyrgus armoricanus in Sweden. J Insect Conserv 1:43–51CrossRefGoogle Scholar
  55. Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation. Chapman & Hall, LondonGoogle Scholar
  56. Rabasa SG, Gutiérrez D, Escudero A (2005) Egg laying by a butterfly on a fragmented host plant: a multi-level approach. Ecography 28:629–639CrossRefGoogle Scholar
  57. Rabasa SG, Gutiérrez D, Escudero A (2007) Metapopulation structure and habitat quality in modelling dispersal in the butterfly Iolana iolas. Oikos 116:793–806CrossRefGoogle Scholar
  58. Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards. Ecol Monogr 43:95–120CrossRefGoogle Scholar
  59. Schneider C (2003) The influence of spatial scale on quantifying insect dispersal: an analysis of butterfly data. Ecol Entomol 28:252–256CrossRefGoogle Scholar
  60. Sjögren-Gulve P, Ray C (1996) Using logistic regression to model metapopulation dynamics: large-scale forestry extirpates the pool frog. In: McCullough DR (ed) Metapopulations and wildlife conservation and management. Island Press, Washington D.C., pp 111–137Google Scholar
  61. Solbreck C (1991) Unusual weather and insect population dynamics: Lygaeus equestris during an extinction and recovery period. Oikos 60:343–350CrossRefGoogle Scholar
  62. Solbreck C, Sillén-Tullberg B (1990) Population dynamics of a seed feeding bug, Lygaeus equestris. 1. Habitat patch structure and spatial dynamics. Oikos 58:199–209CrossRefGoogle Scholar
  63. Sutcliffe O, Thomas CD, Yates TJ, Greatorex-Davies JN (1997) Correlated extinctions, colonizations and population fluctuations in a highly connected ringlet butterfly metapopulation. Oecologia 109:235–241CrossRefGoogle Scholar
  64. Talavera S, Arista M (1998) Notas sobre el género Colutea (Leguminosae) en España. Anales Jard Bot Madrid 56:410–416Google Scholar
  65. Thomas JA (1983) A quick method for estimating butterfly numbers during surveys. Biol Conserv 27:195–211CrossRefGoogle Scholar
  66. Thomas CD (1994) Extinction, colonization and meta-populations: environmental tracking by rare species. Conserv Biol 8:373–378Google Scholar
  67. Thomas CD, Harrison S (1992) Spatial dynamics of a patchily distributed butterfly species. J Anim Ecol 61:437–446CrossRefGoogle Scholar
  68. Thomas CD, Hanski I (1997) Butterfly metapopulations. In: Hanski I, Gilpin M (eds) Metapopulation biology: ecology, genetics, and evolution. Academic Press, San Diego, pp 359–386Google Scholar
  69. Thomas CD, Hanski I (2004) Metapopulation dynamics in changing environments: butterfly responses to habitat and climate change. In: Hanski I, Gaggiotti OE (eds) Ecology, genetics, and evolution of metapopulation. Academic Press, Amsterdam, pp 489–514CrossRefGoogle Scholar
  70. Thomas CD, Thomas JA, Warren MS (1992) Distributions of occupied and vacant butterfly habitats in fragmented landscapes. Oecologia 92:563–567 CrossRefGoogle Scholar
  71. Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc Lond B 268:1791–1796CrossRefGoogle Scholar
  72. Tolman T, Lewington R (1997) Butterflies of Britain & Europe. Collins field guide. Harper Collins, LondonGoogle Scholar
  73. Välimäki P, Itämies J (2003) Migration of the Clouded Apollo butterfly Parnassius mnemosyne in a network of suitable habitats—effects of patch characteristics. Ecography 25:679–691CrossRefGoogle Scholar
  74. Viedma M, Gómez-Bustillo MR (1985) Revisión del Libro Rojo de los Lepidópteros Ibéricos. ICONA, MadridGoogle Scholar
  75. Whittingham MJ, Stephens PA, Bradbury RB, Freckleton RP (2006) Why do we still stepwise modelling in ecology and behaviour? J Anim Ecol 75:1182–1189PubMedCrossRefGoogle Scholar
  76. Wilson RJ, Ellis S, Baker JS, Lineham ME, Whitehead RW, Thomas CD (2002) Large-scale patterns of distribution and persistence at the range margins of a butterfly. Ecology 83:3357–3368CrossRefGoogle Scholar
  77. Zar JH (1999) Biostatistical analyses, 4th edn. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Sonia G. Rabasa
    • 1
    Email author
  • David Gutiérrez
    • 1
  • Adrián Escudero
    • 1
  1. 1.Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan CarlosMóstoles, MadridSpain

Personalised recommendations