Advertisement

Oecologia

, Volume 155, Issue 3, pp 497–508 | Cite as

Pollinator-mediated selfing in two deceptive orchids and a review of pollinium tracking studies addressing geitonogamy

  • Matthias Kropf
  • Susanne S. RennerEmail author
Plant-Animal Interactinons - Original Paper

Abstract

Among the factors thought to have favoured the evolution of deception (rewardlessness) in orchids is the reduction of pollinator-mediated selfing when unrewarded pollinators visit fewer flowers per inflorescence. We obtained data on natural levels of geitonogamy in the deceptive orchids Dactylorhiza sambucina and Himantoglossum hircinum by monitoring the dispersal and receipt of colour-coded pollinia. As donors, we marked 185 flowers of D. sambucina and 956 flowers of H. hircinum. In D. sambucina, 30% of the pollinator-visited flowers and 62% of the marked inflorescences experienced geitonogamous pollination events. In H. hircinum, the respective percentages were 36 and 71%. The furthest pollen transport distance in the Andrena-pollinated H. hircinum was 6.9 m (median 1.27 m), while the furthest transport in the bumblebee-pollinated D. sambucina was 176 m (median 1.23 m), a record in Orchidaceae. An analysis of pollen-tracking studies in orchids revealed geitonogamy levels of around 40% (based on individuals; 19–37% based on flowers) in both rewardless species and rewarding ones. This is similar to geitonogamy levels in other animal-pollinated angiosperms, although the data basis for comparison may still be too small. So far, however, it is not evident that rewardless orchids experience particularly low levels of geitonogamy.

Keywords

Dactylorhiza Deceptive flowers Geitonogamous pollination Himantoglossum Pollinia tracking 

Notes

Acknowledgements

The authors thank R. E. Ricklefs for help with the circular statistics, J. Jersáková, and two anonymous reviewers for comments on the manuscript, the nature conservancies of Koblenz and Neustadt an der Weinstrasse for access permissions, and the Rhineland-Palatinate’s Ministry of the Environment for financial support to M. K.

References

  1. Ackerman JD (1986) Mechanisms and evolution of food-deceptive pollination systems in orchids. Lindleyana 1:108–113Google Scholar
  2. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  3. Bateman RM, Hollingsworth PM, Preston J, Luo Y-b, Pridgeon AM, Chase MW (2003) Molecular phylogenetics and evolution of the Orchidinae and selected Habenariinae (Orchidaceae). Bot J Linn Soc 142:1–40CrossRefGoogle Scholar
  4. Carey PD (1999) Changes in the distribution and abundance of Himantoglossum hircinum (L.) Sprengel (Orchidaceae) over the last 100 years. Watsonia 22:353–364Google Scholar
  5. Carey PD, Farrell L (2002) Himantoglossum hircinum (L.) Sprengel. J Ecol 90:206–218CrossRefGoogle Scholar
  6. Catling PM (1990) Auto-pollination in the Orchidaceae. In: Arditti J (ed) Orchid biology: reviews and perspectives, V. Timber Press, Portland, pp 121–158Google Scholar
  7. Dressler RL (1981) The orchids—natural history and classification. Smithsonian Institution Libaries, WashingtonGoogle Scholar
  8. Dressler RL (1993) Phylogeny and classification of the orchid family. Cambridge University Press, CambridgeGoogle Scholar
  9. Fisher NI (1993) Statistical analysis of circular data. Cambridge University Press, CambridgeGoogle Scholar
  10. Folsom JP (1987) A systematic monograph of Dichaea section Dichaea (Orchidaceae). PhD dissertation, University of Texas at Austin, AustinGoogle Scholar
  11. Folsom JP (1994) Pollination of a fragrant orchid. Orchid Digest 58:83–99Google Scholar
  12. Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu Rev Ecol Evol Syst 36:47–79CrossRefGoogle Scholar
  13. Hagerup O (1952) Bud autogamy in some northern orchids. Phytomorphology 2:51–60Google Scholar
  14. Harder LD, Barrett SCH (1995) Mating cost of large floral displays in hermaphrodite plants. Nature 373:512–515CrossRefGoogle Scholar
  15. Heinrich W, Voelckel H (1999) Die Bocks-Riemenzunge [Himantoglossum hircinum (L.) Spreng.]—Orchidee des Jahres 1999. Ber Arbeitskreis Heimische Orchid 16:83–123Google Scholar
  16. Heusser K (1915) Die Entwicklung der generativen Organe von Himantoglossum hircinum Spr. (=Loroglossum hircinum Rich.). Beih Bot Centralbl 32(I):218–277Google Scholar
  17. Jersáková J, Johnson SD (2006) Lack of floral nectar reduces self-pollination in a fly-pollinated orchid. Oecologia 147:60–68PubMedCrossRefGoogle Scholar
  18. Jersáková J, Johnson SD, Kindlmann P (2006) Mechanisms and evolution of deceptive pollination in orchids. Biol Rev 81:219–235PubMedCrossRefGoogle Scholar
  19. Johnson SD, Nilsson LA (1999) Pollen carryover, geitonogamy, and the evolution of deceptive pollination systems in orchids. Ecology 80:2607–2619CrossRefGoogle Scholar
  20. Johnson SD, Peter CI, Agren J (2004) The effect of nectar addition on removal and geitonogamy in the non-rewarding orchid Anacamptis morio. Proc R Soc Lond Biol Sci 271:803–809CrossRefGoogle Scholar
  21. Johnson SD, Neal PR, Harder LD (2005) Pollen fates and the limits on male reproductive success in an orchid population. Biol J Linn Soc 86:175–190CrossRefGoogle Scholar
  22. Juillet N, Dunand-Martin S, Gigord LDB (2007) Evidence for inbreeding depression in the food-deceptive colour-dimorphic orchid Dactylorhiza sambucina (L.) Soò. Plant Biol 9:147–151PubMedCrossRefGoogle Scholar
  23. Keasar T (2000) The spatial distribution of nonrewarding artificial flowers affects pollinator attraction. Anim Behav 60:639–646PubMedCrossRefGoogle Scholar
  24. Kirchner O von (1922) Über Selbstbestäubung bei den Orchideen. Flora Allg Bot Zeit Neue Folge 15:103–129Google Scholar
  25. Korneck D, Schnittler M, Vollmer I (1996) Rote Liste der Farn- und Blütenpflanzen (Pteridophyta et Spermatophyta) Deutschlands. Schriftenr Vegetationskd 18:21–187Google Scholar
  26. Kropf M (1995) Vegetationskundlicher Vergleich von Standorten des Holunder-Knabenkrautes (Dactylorhiza sambucina) im Nahegebiet und der Rheinhessischen Schweiz unter Berücksichtigung von Pflege sowie Verbreitung und Gefährdung dieser Orchideenart. Fauna Flora Rheinland-Pfalz 8:133–145Google Scholar
  27. Kropf M, Erz S (1996) Die Bocksriemenzunge (Himantoglossum hircinum (L.) Sprengel)—Eine charakteristische Orchideenart der Weinbergsbrachen im Nahegebiet in Ausbreitung. Ber Arbeitskreis Heimische Orchid 12:17–33Google Scholar
  28. Kropf M, Renner SS (2005) Pollination success in monochromic yellow populations of the rewardless orchid Dactylorhiza sambucina. Plant Syst Evol 254:185–197CrossRefGoogle Scholar
  29. Künkele S, Baumann H (1998) Orchidaceae. In: Sebald O, Seybold S, Philippi G, Wörz A (eds) Die Farn- und Blütenpflanzen Baden-Württembergs, Band 8: Spezieller Teil—Juncaceae bis Orchidaceae. Ulmer, Stuttgart, pp 286–462Google Scholar
  30. Lloyd DG (1979) Some reproductive factors affecting the selection of self-fertilization in plants. Am Nat 113:67–79CrossRefGoogle Scholar
  31. Lloyd DG (1992) Self- and cross-fertilization in plants. II. The selection of self-fertilization. Int J Plant Sci 153:370–380CrossRefGoogle Scholar
  32. Maad J, Reinhammar LG (2004) Incidence of geitonogamy differs between two populations in the hawkmoth-pollinated Platanthera bifolia (Orchidaceae). Can J Bot 82:1586–1593CrossRefGoogle Scholar
  33. Nilsson LA (1980) The pollination ecology of Dactylorhiza sambucina (Orchidaceae). Bot Notiser 133:367–385Google Scholar
  34. Nilsson LA, Rabakonandrianina E, Pettersson B (1992) Exact tracking of pollen transfer and mating in plants. Nature 360:666–667CrossRefGoogle Scholar
  35. Peakall R (1989) A new technique for monitoring pollen flow in orchids. Oecologia 79:361–365CrossRefGoogle Scholar
  36. Peakall R, Beattie AJ (1991) The genetic consequences of worker ant pollination in a self-compatible, clonal orchid. Evolution 45:1837–1848CrossRefGoogle Scholar
  37. Peakall R, Beattie AJ (1996) Ecological and genetic consequences of pollination by sexual deception in the orchid Caladenia tentactulata. Evolution 50:2207–2220CrossRefGoogle Scholar
  38. Pleasants JM (1991) Evidence for short-distance dispersal of pollinia in Asclepias syriaca L. Funct Ecol 5:75–82CrossRefGoogle Scholar
  39. Renner SS (2005) Rewardless flowers in the angiosperms and the role of insect cognition in their evolution. In: Waser NM, Ollerton J (eds) Plant–pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago, pp 123–144Google Scholar
  40. Salguero-Faría JA, Ackerman JD (1999) A nectar reward: is more better? Biotropica 31:303–311CrossRefGoogle Scholar
  41. Schmid G (1912) Zur Ökologie der Blüte von Himantoglossum. Ber Deutsch Bot Ges 30:463–469Google Scholar
  42. Smithson A (2002) The consequences of rewardlessness in orchids: reward supplementation experiments with Anacamptis morio (Orchidaceae). Am J Bot 89:1579–1587CrossRefGoogle Scholar
  43. Smithson A (2006) Pollinator limitation and inbreeding depression in orchid species with and without nectar rewards. New Phytol 169:419–430PubMedCrossRefGoogle Scholar
  44. Smithson A, Gigord LDB (2001) Are there fitness advantages in being a rewardless orchid? Reward supplementation experiments with Barlia robertiana. Proc R Soc Lond Ser B 268:1–7CrossRefGoogle Scholar
  45. Snow AA, Spira TP, Simpson R, Klips RA (1996) The ecology of geitonogamous pollination. In: Harder LD, Barrett SCH (eds) Floral biology—studies on floral evolution and animal-pollinated plants. Chapman & Hall, New York, pp 191–216Google Scholar
  46. Teschner W (1980) Sippendifferenzierung und Bestäubung bei Himantoglossum Koch. In: Senghas K, Sundermann H (eds) Probleme der Evolution bei europäischen und mediterranen Orchideen. Die Orchidee Sonderheft, pp 104–115Google Scholar
  47. Thomson JD (1988) Effects of variation in inflorescence size and floral rewards on the visitation rates of traplining pollinators of Aralia hispida. Evol Ecol 2:65–76CrossRefGoogle Scholar
  48. Thomson JD, Price MV, Waser NM, Stratton DA (1986) Comparative studies of pollen and fluorescent dye transport by bumble bees (Bombus occidentalis) visiting Erythronium grandiflorum. Oecologia 69:561–566CrossRefGoogle Scholar
  49. Tremblay RL (1994) Frequency and consequences of multiparental pollinations in a population of Cypripedium calceolus L. var. pubescens (Orchidaceae). Lindleyana 9:161–167Google Scholar
  50. Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc 84:1–54CrossRefGoogle Scholar
  51. Vöth W (1982) Die ‘ausgeborgten’ Bestäuber von Orchis pallens L. Orchidee 33:196–203Google Scholar
  52. Waser NM, Price MV (1982) A comparison of pollen and fluorescent dye carryover by natural pollinators of Ipomopsis aggregata (Polemoniaceae). Ecology 63:1168–1172CrossRefGoogle Scholar
  53. Wolfe AD, Estes JR, Chissoe III WF (1991) Tracking pollen flow of Solanum rostratum (Solanaceae) using backscatter scanning electron microscopy and X-ray microanalysis. Am J Bot 78:1503–1507CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of BotanyUniversity of Natural Resources and Applied Life SciencesViennaAustria
  2. 2.Systematic BotanyUniversity of MunichMunichGermany

Personalised recommendations