Oecologia

, Volume 152, Issue 3, pp 473–484

Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions

  • Claudia Wiedner
  • Jacqueline Rücker
  • Rainer Brüggemann
  • Brigitte Nixdorf
Population Ecology

Abstract

Cylindrospermopsis raciborskii, an invasive freshwater cyanobacterium, originated from the tropics but has spread to temperate zones over the last few decades. Its northernmost populations in Europe occur in North German lakes. How such dramatic changes in its biogeography are possible and how its population dynamics in the newly invaded habitats are regulated are still unexplained. We therefore conducted a long-term (1993–2005) study of two German lakes to elucidate the mechanisms behind C. raciborskii population dynamics and to identify the abiotic constraints on its development. Our data revealed that pelagic populations of C. raciborskii thrived for three months during the summer, contributing up to 23% of the total cyanobacteria biovolume. Population sizes varied greatly between years without exhibiting any distinct long-term trends. In the annual lifecycle, C. raciborskii filaments emerged in the pelagic habitat when the temperature rose above 15–17 °C. At that time, mean photosynthetically active radiation in the mixed water column (Imix) overstepped its maximum. Rates of population net increase were highest at the beginning of the season (0.15–0.28 day−1), declined continuously over time, and were significantly positively correlated with Imix. This indicates that the onset of the pelagic population is temperature-mediated and that Imix controls its growth. Since Imix peaks before the population onset, the time of germination is of crucial importance for successful development. To test this hypothesis, we designed a model to simulate pelagic population size, starting at different dates in the annual cycle. Moving the population onset forward by 30 days resulted in a doubling of the population size. We therefore conclude that an earlier rise in water temperature associated with climate change has promoted the spread of C. raciborskii to the temperate zone. Earlier warming permits earlier germination, thereby shifting the pelagic populations to a phase with higher Imix, which advances growth and the population establishment.

Keywords

Nostocales Cylindrospermopsis raciborskii Population dynamics Lifecycle Biogeography 

References

  1. Behrendt H, Nixdorf B (1993) The carbon balance of phytoplankton production and loss processes based on in situ measurements in a shallow lake. Int Rev Ges Hydrobiol 78:439–458CrossRefGoogle Scholar
  2. Bourke ATC, Hawes RB, Neilson A, Stallman ND (1983) An outbreak of the hepatoenteritis (the Palm island mystery disease) possibly caused by algal intoxication. Toxicon Suppl 3:45–48Google Scholar
  3. Bouvy M, Molica R, De Oliveira S, Marinho M, Beker B (1999) Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northern Brazil. Aqua Micobiol Ecol 20:285–297Google Scholar
  4. Branco CWC, Senna PAC (1994) Factors influencing the development of Cylindrospermopsis raciborskii and Microcystis aeruginosa in the Paranoá reservoir, Brasília, Brazil. Algol Stud 75:85–96Google Scholar
  5. Briand JF, Robillot C, Quiblier-Lloberas C, Humbert JF, Couté A, Bernard C (2002) Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France. Water Res 36:3183–3192PubMedCrossRefGoogle Scholar
  6. Briand JF, Leboulanger C, Humbert JF, Bernard C, Dufour P (2004) Cylindrospermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance, or global warming? J Phycol 40:231–238CrossRefGoogle Scholar
  7. Chonudomkul D, Yongmanitchai W, Theeragool G, Kawachi M, Kasai F, Kaya K, Watanabe MM (2004) Morphology, genetic diversity, temperature tolerance and toxicity of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Thailand and Japan. FEMS Microbiol Ecol 48:345–355CrossRefPubMedGoogle Scholar
  8. Couté A, Leitao M, Martin C (1997) Premièr observation du genre Cylindrospermopsis (Cyanophyceae, Nostocales) en France. Cyptogaie Algol 18:57–70 (in French)Google Scholar
  9. Czensny R (1938) Die oscillatorienerkrankung unserer seen, biologie und chemismus einiger märkischer seen. Vom Wasser 8:36–57Google Scholar
  10. De Nobel WT, Huisman J, Snoep JL, Mur LR (1997) Competition for phosphorus between the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon. FEMS Microbiol Ecol 24:259–267CrossRefGoogle Scholar
  11. DEV (1976–1998) (Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung). Schlammuntersuchung. Verlag Chemie, Weinheim, D11, E5, D9, C9, E1, H7Google Scholar
  12. Dobberfuhl DR (2003) Cylindrospermopsis raciborskii in three central Florida lakes: population dynamics, controls, and management implications. Lake Res Manage 19:341–348CrossRefGoogle Scholar
  13. Dokulil MT, Mayer J (1996) Population dynamics and photosynthetic rates of a CylindrospermopsisLimnothrix association in a highly eutrophic urban lake, Alte Donau, Vienna, Austria. Algol Stud 83:179–195Google Scholar
  14. Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 40:881–884CrossRefGoogle Scholar
  15. Fabbro LD, Duivenvoorden LJ (1996) Profile of a bloom of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Ruju in Fitzroy river in tropical central Queensland. Mar Freshw Res 47:685–694CrossRefGoogle Scholar
  16. Fastner J, Heinze R, Humpage AR, Mischke U, Eaglesham GK, Chorus I (2003) Cylindrospermopsin occurrence in two German lakes and preliminary assessment of toxicity and toxin production of Cylindrospermopsis raciborskii (Cyanobacteria) isolates. Toxicon 42:3113–3321CrossRefGoogle Scholar
  17. Gerten D, Adrian R (2000) Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic oscillation. Limnol Oceanogr 45:1058–1066CrossRefGoogle Scholar
  18. Gorzó G (1987) Fizikai és kémiai faktorok hatása a Balatonban elöforduló heterocisztás cianobaktériumok spóráinak csírázására (The influence of physical and chemical factors on the germination of spores of heterocystic cyanobacteria in lake Balaton). Hidrol Közlöny 67:127–133 (in Hungarian)Google Scholar
  19. Gugger M, Molica R, Le Berre B, Dufour P, Bernard C, Humbert JF (2005) Genetic diversity of Cylindrospermopsis strains (Cyanobacteria) isolated from four continents. Appl Environ Microbiol 71:1097–1100PubMedCrossRefGoogle Scholar
  20. Hamilton PB, Ley LM, Dean S, Pick FR (2005) The occurrence of the cyanobacterium Cylindrospermopsis raciborskii in Constance Lake: an exotic cyanoprokaryote new to Canada. Phycologia 44:17–25CrossRefGoogle Scholar
  21. Haney JF (1987) Field studies on zooplankton–cyanobacteria interactions. NZ J Mar Freshw Res 21:467–475CrossRefGoogle Scholar
  22. Hawkins PR, Runnegar MTC, Jackson ARB, Falconer IR (1985) Severe hepatotoxicity caused by the tropical cyanobacterium (blue–green alga) Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju isolated from a domestic water supply reservoir. Appl Environ Microbiol 50:1292–1295PubMedGoogle Scholar
  23. Hawkins PR, Chandrasena NR, Jones GJ, Humpage AR, Falconer IR (1997) Isolation and toxicity of Cylindrospermopsis raciborskii from an ornamental lake. Toxicon 35:341–346PubMedCrossRefGoogle Scholar
  24. Istvánovics V, Shafik HM, Présing M, Juhos S (2000) Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshw Biol 43:257–275CrossRefGoogle Scholar
  25. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, London, pp 509Google Scholar
  26. Krienitz L, Hegewald E (1996) Über das Vorkommen von wärmeliebenden Blaualgenarten in einem norddeutschen Gewässer. Lauterb H 26:55–63 (in German)Google Scholar
  27. Lagos N, Onodera H, Zagatto PA, Andrinolo D, Azevedo SMFQ, Oshima Y (1999) The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon 37:1359–1373PubMedCrossRefGoogle Scholar
  28. Lambrinos JG (2004) How interactions between ecology and evolution influence contemporary invasion dynamics. Ecology 85:2061–2070Google Scholar
  29. Li R, Carmichael WW, Brittain S, Eaglesham GK, Shaw GR, Noparatnaraporn AMN, Yongmanitchai W, Kaya K, Watanabe MM (2001) Detection of cylindrospermopsin from a strain of Cylindrospermopsis racibroskii (cyanobacteria) isolated from Thailand. Toxicon 39:973–980Google Scholar
  30. McGregor GB, Fabbro LD (2000) Dominance of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) in Queensland tropical and subtropical reservoirs: Implications for monitoring and management. Lakes Reserv Res Manage 5:195–205CrossRefGoogle Scholar
  31. Mischke U (2003) Cyanobacteria associations in shallow polytrophic lakes: influence of environmental factors. Acta Oecol 24:11–23CrossRefGoogle Scholar
  32. Moore D, O’Donohue M, Shaw G, Critchley C (2003) Potential triggers for akinete differentiation in an Australian strain of the cyanobacterium Cylindrospermopsis raciborskii (AWT 205/1). Hydrobiologia 506–509:175–180CrossRefGoogle Scholar
  33. Moore D, O’Donohue M, Garnett C, Critchley C, Shaw G (2005) Factors affecting akinete differentiation in Cylindrospermopsis raciborskii (Nostocales, cyanobacteria). Freshw Biol 50:345–352CrossRefGoogle Scholar
  34. Nixdorf B, Deneke R (1997) Why very shallow lakes are more successful opposing reduced nutrient loads. Hydrobiologia 342/343:269–284CrossRefGoogle Scholar
  35. Nixdorf B, Mischke U, Rücker J (2003) Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes—an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502:111–121CrossRefGoogle Scholar
  36. Ohtani I, Moore RE, Runnegar MTC (1992) Cylindrospermopsin: a potent hepatotoxin from the blue–green alga Cylindrospermopsis raciborskii. J Am Chem Soc 114:7941–7942CrossRefGoogle Scholar
  37. Padisák J (1997) Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding highly adaptive blue–green algal species: worldwide distribution and review of its ecology. Arch Hydrobiol Suppl 107:563–593Google Scholar
  38. Padisák J, Reynolds CS (1998) Selection of phytoplankton associations in Lake Balaton, Hungary in response to eutrophication and restoration measures, with special reference to cyanoprokaryotes. Hydrobiologia 384:41–53CrossRefGoogle Scholar
  39. Présing M, Herodek S, Vörös L, Kóbor I (1996) Nitrogen fixation, ammonium and nitrate uptake during a bloom of Cylindrospermopsis raciborskii in Lake Balaton. Arch Hydrobiol 136:553–562Google Scholar
  40. Riley GA (1957) Phytoplankton in the north central Sargasso Sea 1950–1952. Limnol Oceanogr 2:252–272Google Scholar
  41. Rott E (1981) Some results from phytoplankton counting intercalibration. Schweiz Z Hydrol 43:34–62CrossRefGoogle Scholar
  42. Rücker J, Wiedner C, Zippel P (1997) Factors controlling the dominance of Planktothrix agardhii and Limnothrix redekei in eutrophic shallow lakes. Hydrobiologia 342/343:107–115CrossRefGoogle Scholar
  43. Saker ML, Griffiths DJ (2000) The effect of temperature on growth and cylindrospermopsin content of seven isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from water bodies in northern Australia. Phycologia 39:349–354CrossRefGoogle Scholar
  44. Saker ML, Nogueira ICG, Vasconcelos CM, Neilan BA, Eaglesham GK, Pereira P (2003) First report and toxicological assessment of the cyanobacterium Cylindrospermopsis raciborskii from Portuguese freshwaters. Ecotoxicol Environ Saf 55:243–250PubMedCrossRefGoogle Scholar
  45. Schäperclaus W (1941) Seenverschlechterung. Z Fischerei XXXVIII:345–375Google Scholar
  46. Shafik HM, Herodek S, Présing M, Vörös L (2001) Factors effecting growth and cell composition of cyanoprokaryote Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju. Algol Stud 103:75–93Google Scholar
  47. Shapiro J (1990) Current beliefs regarding dominance by blue-greens: the case for the importance of CO2 and pH. Verh Int Ver Limnol 24:38–54Google Scholar
  48. Skuja H (1938) Süsswasseralgen aus Griechenland und Kleinasien. Hedwigia 77:15–70Google Scholar
  49. Souza RCR, Carvalho MC, Truzzi AC (1998) Cylindrospermopsis raciborskii (Wolosz.) Seenaya and Subba Raju (Cyanophyceae) dominance and a contribution to the knowledge of Rio Pequeno Arm, Billings reservoir, Brazil. Environ Toxicol Water Qual 13:73–81CrossRefGoogle Scholar
  50. Straile D (2000) Meteorological forcing of plankton dynamics in a large and deep continental European lake. Oecologia 122:44–50CrossRefGoogle Scholar
  51. Stüken A, Rücker J, Endrulat T, Preussel K, Hemm M, Nixdorf B, Karsten U, Wiedner C (2006) Distribution of three alien cyanobacterial species (Nostocales) in northeast Germany: Cylindrospermopsis raciborskii, Anabaena bergii and Aphanizomenon aphanizomenoides. Phycologia 45:696–703CrossRefGoogle Scholar
  52. Tóth LG, Padisák J (1986) Meterological factors affecting the bloom of Anabaenopsis raciborskii Wolsz. (Cyanophytoa: Hormogonales) in the shallow lake Balaton, Hungary. J Plankton Res 8:353–363CrossRefGoogle Scholar
  53. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Int Ver Limnol 9:1–38Google Scholar
  54. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoeg-Guldenberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395PubMedCrossRefGoogle Scholar
  55. Ward AK, Wetzel RG (1980) Interaction of light and nitrogen source among planktic blue–green algae. Arch Hydrobiol 90:1–25Google Scholar
  56. Weyhenmeyer GA, Blenckner T, Petterson K (1999) Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnol Oceanogr 44:1788–1792CrossRefGoogle Scholar
  57. Wiedner C, Nixdorf B, Heinze R, Wirsing B, Neumann U, Weckesser J (2002) Regulation of cyanobacteria and microcystin dynamics in polymictic shallow lakes. Arch Hydrobiol 155:383–400Google Scholar
  58. Winder M, Schindler DE (2004) Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85:2100–2106Google Scholar
  59. Woloszynska J (1912) Das Phytoplankton einiger Javanian Seen mit Berücksichtigung des Sawa-Planktons. Bull Int Acad Sci Cracoviae Ser B 6:649–709Google Scholar
  60. Wood SA, Stirling DJ (2003) First identification of the cylindrospermopsin-producing cyanobacterium Cylindrospermopsis raciborskii in New Zealand. NZ J Mar Freshw Res 37:821–828CrossRefGoogle Scholar
  61. Wundsch HH (1940) Beiträge zur Fischereibiologie märkischer Seen, VI. die Entwicklung eines besonderen Seentypus (H2S-Oscillatorien-Seen) im Flußgebiet der Spree und Havel, und seine Bedeutung für die Fischereibiologischen Bedingungen in dieser Region. Z Fischerei XXXVIII:443–648Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Claudia Wiedner
    • 1
  • Jacqueline Rücker
    • 3
  • Rainer Brüggemann
    • 2
  • Brigitte Nixdorf
    • 3
  1. 1.Department of Limnology of Stratified LakesLeibniz-Institute of Freshwater Ecology and Inland FisheriesStechlin-NeuglobsowGermany
  2. 2.Department of EcohydrologyLeibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  3. 3.Department of Freshwater ConservationBrandenburg University of TechnologyBad SaarowGermany

Personalised recommendations