Advertisement

Oecologia

, Volume 152, Issue 1, pp 26–36 | Cite as

Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate

  • José Ignacio QuerejetaEmail author
  • Héctor Estrada-Medina
  • Michael F. Allen
  • Juan José Jiménez-Osornio
Ecophysiology

Abstract

The sources of water used by woody vegetation growing on karst soils in seasonally dry tropical regions are little known. In northern Yucatan (Mexico), trees withstand 4–6 months of annual drought in spite of the small water storage capacity of the shallow karst soil. We hypothesized that adult evergreen trees in Yucatan tap the aquifer for a reliable supply of water during the prolonged dry season. The naturally occurring concentration gradients in oxygen and hydrogen stable isotopes in soil, bedrock, groundwater and plant stem water were used to determine the sources of water used by native evergreen and drought-deciduous tree species. While the trees studied grew over a permanent water table (9–20 m depth), pit excavation showed that roots were largely restricted to the upper 2 m of the soil/bedrock profile. At the peak of the dry season, the δ18O signatures of potential water sources for the vegetation ranged from 4.1 ± 1.1‰ in topsoil to −4.3 ± 0.1‰ in groundwater. The δ18O values of tree stem water ranged from −2.8 ± 0.3‰ in Talisia olivaeformis to 0.8 ± 1‰ in Ficus cotinifolia, demonstrating vertical partitioning of soil/bedrock water among tree species. Stem water δ18O values were significantly different from that of groundwater for all the tree species investigated. Stem water samples plotted to the right of the meteoric water line, indicating utilization of water sources subject to evaporative isotopic enrichment. Foliar δ13C in adult trees varied widely among species, ranging from −25.3 ± 0.3‰ in Enterolobium cyclocarpum to −28.7 ± 0.4‰ in T. olivaeformis. Contrary to initial expectations, data indicate that native trees growing on shallow karst soils in northern Yucatan use little or no groundwater and depend mostly on water stored within the upper 2–3 m of the soil/bedrock profile. Water storage in subsurface soil-filled cavities and in the porous limestone bedrock is apparently sufficient to sustain adult evergreen trees throughout the pronounced dry season.

Keywords

Yucatan Isotopes Resource partitioning Groundwater Rooting depth 

Notes

Acknowledgements

We thank Angela López, Season Snyder and Roberto Lepe for their help with laboratory and field work. This research was supported by a UC MEXUS-CONACYT grant awarded jointly by the University of California Institute for Mexico and the United States, and the Mexican Comisión Nacional de Ciencia y Tecnología . We also thank the American Institute for Global Change Research (IAI Project: Biogeochemical Cycles under Land Use Change in the Semiarid Americas) for support. J. I .Querejeta acknowledges a postdoctoral Fulbright Fellowship from the Spanish Ministerio de Educación y Ciencia. The editor (Todd Dawson) and two anonymous reviewers made suggestions that greatly improved an earlier draft of the manuscript.

Reference

  1. Barnes CJ, Turner JV (1998) Isotopic exchange in soil water In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, AmsterdamGoogle Scholar
  2. Bautista-Zuñiga F, Estrada-Medina H, Jiménez-Osornio JJ, González-Iturbe JA (2004) Relación entre el relieve y unidades de suelo en zonas cársticas de Yucatán. Terra Latinoam 22:243–254Google Scholar
  3. Benjamin TJ, Montañez PI, Jiménez JJM, Gillespie AR (2001) Carbon, water and nutrient flux in Maya homegardens in the Yucatán peninsula of México. Agrofor Syst 53:103–111CrossRefGoogle Scholar
  4. Bonal D, Sabatier D, Montpied P, Tremeaux D, Guehl JM (2000) Interspecific variability of δ13C among trees in rainforests of French Guiana: functional groups and canopy interaction. Oecologia 124:454–468CrossRefGoogle Scholar
  5. Borchert R, Meyer SA, Felger RS, Porter-Bolland L (2004) Environmental control of flowering periodicity in Costa Rican and Mexican tropical dry forests. Global Ecol Biogeogr 13:409–425CrossRefGoogle Scholar
  6. Brunel JP, Walker GR, Kenneth-Smith AK (1995) Field validation of isotopic procedures for determining sources of water used by plants in a semiarid environment. J Hydrol 167:351–368CrossRefGoogle Scholar
  7. Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation at the global scale. Oecologia 108:583–595CrossRefGoogle Scholar
  8. Chapotin SM, Razanameharizaka JH, Holbrook NM (2006) Baobab trees (Adansonia) in Madagascar use stored water to flush new leaves but not to support stomatal opening before the rainy season. New Phytol 169:549–559PubMedCrossRefGoogle Scholar
  9. Chimner RA, Cooper DJ (2004) Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado U.S.A. Plant Soil 260:225–236CrossRefGoogle Scholar
  10. Cramer VA, Thorburn PJ, Fraser GW (1999) Transpiration and groundwater uptake from farm forest plots of Casuarina glauca and Eucalyptus camaldulensis in saline areas of southeast Queensland, Australia. Agric Water Manage 39:187–204CrossRefGoogle Scholar
  11. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559CrossRefGoogle Scholar
  12. Drake PL, Franks PJ (2003) Water resource partitioning, stem xylem hydraulic properties, and plant water use strategies in a seasonally dry riparian tropical rainforest. Oecologia 137:321–329PubMedCrossRefGoogle Scholar
  13. Duch, GJ (1991) Fisiografía del Estado de Yucatán—su relación con la agricultura-. Centro Regional de la Península de Yucatán (CRUPY), Universidad Autónoma de Chapingo, MéxicoGoogle Scholar
  14. Duch, GJ (1995) Los suelos, la agricultura y vegetación en Yucatán. En: Hérnandez, E., Bello, E. y Levy, S. La milpa en Yucatán: Un sistema de producción agrícola tradicional. Tomo 1. Colegio de Postgraduados, MéxicoGoogle Scholar
  15. Ehleringer JR, Dawson TE (1992) Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ 15:1073–1082CrossRefGoogle Scholar
  16. Ehleringer JR, Roden J, Dawson TE (2000) Assessing ecosystem-level water relations through stable isotope analyses. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer, Berlin Heidelberg New York, pp 181–198Google Scholar
  17. Estrada-Medina H (2000) Caracterización y cartografía del recurso suelo del municipio de Hocabá, Yucatán. Tesis de Maestría en Manejo y Conservación de Recursos Naturales Tropicales. Mérida, Yucatán, MéxicoGoogle Scholar
  18. Estrada-Medina H, Graham RC, Allen MF, Jimenez-Osornio JJM (2005) Karstic features and tree root development in Yucatán, México. ASA–CSSA–SSSA International Annual Meeting, 6–10 November 2005, UtahGoogle Scholar
  19. Ewe SML, Sternberg L, Busch DE (1999) Water use patterns of woody species in pineland and hammock communities of South Florida. For Ecol Manage 118:139–148CrossRefGoogle Scholar
  20. Farrington P, Turner JV, Gailitis V (1996) Tracing water uptake by jarrah (Eucalyptus marginata) trees using natural abundances of deuterium. Trees 11:9–15Google Scholar
  21. Flanagan LB, Ehleringer JR, Marshall JD (1992) Differential uptake of summer precipitation among co-occurring trees and shrubs in a pinyon-juniper woodland. Plant Cell Environ 15:831–836CrossRefGoogle Scholar
  22. Förstel H, Hützen H (1983) 18O/16O ratio of water in a local ecosystem as a basis of climate record. In: Palaeoclimates and palaeowaters: a collection of environmental isotope studies. IAEA, Vienna, pp 67–81Google Scholar
  23. Franco AC, Bustamante M, Caldas LS et al (2005) Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees Struct Funct 19:326–335Google Scholar
  24. González-Herrera R, Sánchez-Pinto I, Gamboa-Vargas J (2002) Groundwater flow modeling in the Yucatán karstic aquifer, México. Hydrogeol J 10:539–552CrossRefGoogle Scholar
  25. Gries D, Zeng F, Foetzki A, Arndt SK, Bruelheide H, Thomas FM, Zhang X, Runge M (2003) Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table. Plant Cell Environ 26:725–736CrossRefGoogle Scholar
  26. Hubbert KR, Beyers JL, Graham RC (2001) Roles of weathered bedrock and soil in seasonal water relations of Pinus jeffreyi and Arctostaphylos patula. Can J For Res 31:1947–1957CrossRefGoogle Scholar
  27. Ish-Shalom N, Sternberg LDL, Ross M, O’Brien J, Flynn L (1992) Water utilization of tropical hardwood hammocks of the Lower Florida Keys. Oecologia 92:108–112CrossRefGoogle Scholar
  28. Jackson PC, Cavelier J, Goldstein G, Meinzer FC, Holbrook NM (1995) Partitioning of water resources among plants of a lowland tropical forest. Oecologia 101:197–203CrossRefGoogle Scholar
  29. Jackson PC, Meinzer FC, Bustamante M, Goldstein G, Franco A, Rundel PW, Caldas L, Igler E, Causin F (1999) Partitioning of soil water among tree species in a Brazilian Cerrado ecosystem. Tree Physiol 19:717–724PubMedGoogle Scholar
  30. Jipp PH, Nepstad DC, Cassel DK, Carvalho CRD (1998) Deep soil moisture storage and transpiration in forests and pastures of seasonally-dry Amazonia. Climate Change 39:395–412CrossRefGoogle Scholar
  31. Leffler JA, Enquist BJ (2002) Carbon isotope composition of tree leaves from Guanacaste, Costa Rica: comparison across tropical forests and tree life history. J Trop Ecol 18:151–159CrossRefGoogle Scholar
  32. Lewis DC, Burghy RH (1964) The relationship between oak tree roots and groundwater in fractured rock as determined by tritium tracing. J Geophys Res 69:2579–2588CrossRefGoogle Scholar
  33. Ludwig F, Dawson TE, Kroon H, Berendse F, Prins HHT (2003) Hydraulic lift in Acacia tortilis trees on an East African Savanna. Oecologia 134:293–300PubMedGoogle Scholar
  34. Martinelli LA, Almeida S, Brown IF, Moreira MZ, Victoria RL, Sternberg LSL, Ferreira CAC, Thomas WW (1998) Stable carbon isotope ratio of tree leaves, boles and fine litter in a tropical forest in Rondônia, Brazil. Oecologia 114:170–179CrossRefGoogle Scholar
  35. Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Wright SJ (1999) Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 121:293–301CrossRefGoogle Scholar
  36. Nepstad DC, Carvalho CR de, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, Silva ED da, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669CrossRefGoogle Scholar
  37. Oliveira RS, Bezerra L, Davidson EA, Pinto F, Klink CA, Nepstad DC, Moreira A (2005) Deep root function in soil water dynamics in cerrado savannas of central Brazil. Fuct Ecol 19:574–581CrossRefGoogle Scholar
  38. Oppenheimer HR (1958) Further observations on roots penetrating into rocks and their structure. Bull Res Counc Isr 6:18–31Google Scholar
  39. Orellana R, Balam-Ku M, Bañuelos-Robles I, García E, González-Iturbe JA, Herrera-Cetina F, Vidal-López J (1999) Evaluación climática. In: García de Fuentes A, Córdoba y Ordóñez J, Chico Ponce de León P (eds) Atlas de Procesos Territoriales de Yucatán. Universidad Autónoma de Yucatán, Mérida, Yucatán, pp 163–182Google Scholar
  40. Phillips SL, Ehleringer JR (1995) Limited uptake of summer precipitation by bigtooth maple (Acer grandidentatum Nutt) and Gambel’s oak (Quercus gambelii Nutt). Trees 9:214–219CrossRefGoogle Scholar
  41. Philips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269CrossRefGoogle Scholar
  42. Rose KL, Graham RC, Parker DR (2003) Water source utilization by Pinus jeffreyi and Actostaphylos patula on thin soils over bedrock. Oecologia 134:46–54PubMedCrossRefGoogle Scholar
  43. Schenk HJ, Jackson RB (2002) The global biogeography of roots. Ecol Monogr 72:311–328CrossRefGoogle Scholar
  44. Schenk HJ, Jackson RB (2005) Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126:129–140CrossRefGoogle Scholar
  45. Snyder KA, Williams DG (2000) Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona. Agric For Meteorol 105:227–240CrossRefGoogle Scholar
  46. Sobrado MA, Ehleringer JR (1997) Leaf carbon isotope ratios from a tropical dry forest in Venezuela. Flora 192:121–124Google Scholar
  47. Socki RA, Perry EC, Romanek CS (2002) Stable isotope systematics of two cenotes from the northern Yucatan Peninsula, Mexico. Limnol Oceanogr 47:1808–1818CrossRefGoogle Scholar
  48. Sternberg LDL, Moreira MZ, Nepstad DC (2002) Uptake of water by lateral roots of small trees in an Amazonian Tropical Forest. Plant Soil 238:151–158CrossRefGoogle Scholar
  49. Stewart GR, Turnbull MH, Schmidt S, Erskine PD (1995) C-13 natural abundance in plant communities along a rainfall gradient: a biological integrator of water availability. Aust J Plant Physiol 22:51–55CrossRefGoogle Scholar
  50. Stratton LC, Goldstein G, Meinzer FC (2000) Temporal and spatial partitioning of water resources among eight woody species in a Hawaiian dry forest. Oecologia 124:309–317CrossRefGoogle Scholar
  51. Tu KP, Brooks PD, Dawson TE (2001) Using septum-capped vials with continuous-flow isotope ratio mass spectrometric analysis of atmospheric CO2 for Keeling plot applications. Rapid Commun Mass Spectrom 15:952–956CrossRefGoogle Scholar
  52. Weidie AE (1985) Geology of the Yucatan Platform. In: Ward WC, et al. (eds) Geology an hydrogeology of the Yucatan and Quaternary geology of northeastern Yucatan Peninsula. NOGS, New Orleans, La., pp 1–19Google Scholar
  53. Weisbach C, Tiessen H, Jiménez-Osornio JJ (2002) Soil fertility during shifting cultivation in the tropical karst soils of Yucatan. Agronomie 22:253–263CrossRefGoogle Scholar
  54. Williams DG, Ehleringer JR (2000) Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecol Monogr 70:517–537CrossRefGoogle Scholar
  55. Xuluc FJ (1995) Caracterización del componente vegetal de los solares de la comunidad de Sahcabá, Yucatán, México. Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán. Mérida, MéxicoGoogle Scholar
  56. Yurtsever Y, Gat JR (1981) Atmospheric waters. In: Gat JR, Gonfianti R (eds) Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. Technical report series 210. International Atomic Energy Agency, Vienna, pp 103–142Google Scholar
  57. Zencich SJ, Froend RH, Turner JV, Gailitis V (2002) Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer. Oecologia 131:8–19CrossRefGoogle Scholar
  58. Zwieniecki MA, Newton M (1996) Seasonal pattern of water depletion from soil-rock profiles in a Mediterranean climate in southwestern Oregon. Can J For Res 26(8):1346–1352Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • José Ignacio Querejeta
    • 1
    • 3
    Email author
  • Héctor Estrada-Medina
    • 1
    • 2
  • Michael F. Allen
    • 1
  • Juan José Jiménez-Osornio
    • 2
  1. 1.Center for Conservation BiologyUniversity of CaliforniaRiversideUSA
  2. 2.Departamento de Manejo y Conservación de Recursos Naturales Tropicales (PROTROPICO), Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma de Yucatán (FMVZ-UADY)MéridaMexico
  3. 3.Departamento de Conservación de Suelos y AguasCentro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC)MurciaSpain

Personalised recommendations