Advertisement

Oecologia

, Volume 151, Issue 2, pp 206–217 | Cite as

Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae

  • Leho Tedersoo
  • Prune Pellet
  • Urmas Kõljalg
  • Marc-André Selosse
Ecophysiology

Abstract

Several forest understorey achlorophyllous plants, termed mycoheterotrophs (MHs), obtain C from their mycorrhizal fungi. The latter in turn form ectomycorrhizas with trees, the ultimate C source of the entire system. A similar nutritional strategy occurs in some green forest orchids, phylogenetically close to MH species, that gain their C via a combination of MH and photosynthesis (mixotrophy). In orchid evolution, mixotrophy evolved in shaded habitats and preceded MH nutrition. By generalizing and applying this to Ericaceae, we hypothesized that green forest species phylogenetically close to MHs are mixotrophic. Using stable C isotope analysis with fungi, autotrophic, mixotrophic and MH plants as comparisons, we found the first quantitative evidence for substantial fungi-mediated mixotrophy in the Pyroleae, common ericaceous shrubs from boreal forests close to the MH Monotropoideae. Orthilia secunda, Pyrola chlorantha, Pyrola rotundifolia and Chimaphila umbellata acquired between 10.3 and 67.5% of their C from fungi. High N and 15N contents also suggest that Pyroleae nutrition partly rely on fungi. Examination of root fungal internal transcribed spacer sequences at one site revealed that 39 species of mostly endophytic or ectomycorrhizal fungi, including abundant Tricholoma spp., were associated with O. secunda, P. chlorantha and C. umbellata. These fungi, particularly ectomycorrhizal associates, could thus link mixotrophic Pyroleae spp. to surrounding trees, allowing the C flows deduced from isotopic evidence. These data suggest that we need to reconsider ecological roles of understorey plants, which could influence the dynamics and composition of forest communities.

Keywords

Mixotrophy Pyroleae Stable isotopes Ectomycorrhizal fungi Ericaceae 

Notes

Acknowledgements

We thank Triin Suvi for assistance in sampling, David Marsh for English corrections, Marie-Pierre Dubois and Hélène Vignes for help in molecular analyses, as well as Abdala Diedhiou, Hannes Gamper, Martine Hossaert, Doyle McKey, Sergine Ponsard and three anonymous reviewers for helpful comments on earlier version of this paper. The authors received funding from the Estonian Science Foundation (grants no. 5232 and 6606 to U. Kõljalg) and from the Centre National de la Recherche Scientifique (ATIPE to M.-A. Selosse).

References

  1. Abe J (2005) An arbuscular mycorrhizal genus in the Ericaceae. Abstracts of the MSA Symposium, 2005. Hilo, HawaiiGoogle Scholar
  2. Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83:1–13CrossRefGoogle Scholar
  3. Ahlich K, Sieber TN (1996) The profusion of dark septate endophytic fungi in non-ectomycorrhizal fine roots of forest trees and shrubs. New Phytol 132:259–270CrossRefGoogle Scholar
  4. Bardgett RD, Smith RS, Shiel RS, Peacock S, Simkin JM, Quirk H, Hobbs PJ (2006) Parasitic plants indirectly regulate below-ground properties in grassland ecosystems. Nature 439:969–972PubMedCrossRefGoogle Scholar
  5. Bidartondo MI (2005) The evolutionary ecology of mycoheterotrophy. New Phytol 167:335–352PubMedCrossRefGoogle Scholar
  6. Bidartondo MI, Bruns TD (2002) Fine-level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups. Mol Ecol 11:557–569PubMedCrossRefGoogle Scholar
  7. Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond Ser B 271:1799–1806CrossRefGoogle Scholar
  8. Bruns TD, Bidartondo MI, Taylor DL (2002) Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integ Comp Biol 42:352–359CrossRefGoogle Scholar
  9. Carey EV, Marler MJ, Callaway RM (2004) Mycorrhiza transfer of carbon from a native grass to an invasive weed: evidence from stable isotopes and physiology. Plant Ecol 172:133–141CrossRefGoogle Scholar
  10. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559CrossRefGoogle Scholar
  11. Delwiche CC, Zinke PJ, Johnson CM, Virginia RA (1978) Nitrogen isotope distribution as a presumptive indicator of nitrogen fixation. Bot Gaz 140:S65–S69CrossRefGoogle Scholar
  12. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen W (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Goltze, GöttingenGoogle Scholar
  13. Freudenstein JV (1999) Relationships and character transformation in Pyroloideae (Ericaceae) based on ITS sequences, morphology, and development. Syst Bot 24:398–408CrossRefGoogle Scholar
  14. Gebauer G (2005) Partnertausch im dunklen Wald—Stabile Isotope geben neue Einblicke in das Ernährungsverhalten von Orchideen. In: Bayerische Akademie der Wissenschaften (ed) Auf Spurensuche in der Natur: Stabile Isotope in der ökologischen Forschung. Rundgespräche der Kommission für Ökologie, vol 30.. Pfeil, München, pp 55–67Google Scholar
  15. Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223CrossRefGoogle Scholar
  16. Girlanda M, Selosse M-A, Cafasso D, Brilli F, Delfine S, Fabbian R, Ghignone S, Pinelli P, Segreto R, Loreto F, Cozzolino S, Perotto S (2006) Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum (L.) Swartz is mirrored by specific association to ectomycorrhizal Russulaceae. Mol Ecol 15:491–504PubMedCrossRefGoogle Scholar
  17. Havskum H, Riemann B (1996) Ecological importance of bacterivorous, pigmented flagellates (mixotrophs) in the Bay of Aarhus, Denmark. Mar Ecol Progr Ser 137:251–263Google Scholar
  18. Hunt R, Hope-Simpson JF (1990) Growth of Pyrola rotundifolia ssp. maritima in relation to shade. New Phytol 114:129–137CrossRefGoogle Scholar
  19. Isogai N, Yamamura Y, Mariko S, Nakano T (2003) Seasonal pattern of photosynthetic production in a subalpine evergreen herb, Pyrola incarnata. J Plant Res 116:199–206PubMedCrossRefGoogle Scholar
  20. Jakobsen HH, Hansen PJ, Larsen J (2000) Growth and grazing responses of two chloroplast-retaining dinoflagellates: effect of irradiance and prey species. Mar Ecol Progr Ser 201:121–128Google Scholar
  21. Jeong HJ, Yoo YD, Seong KA, Kim JH, Park JY, Kim S, Lee SH, Ha JH, Yih WH (2005) Feeding by the mixotrophic red-tide dinoflagellate Gonyaulax polygramma: mechanisms, prey species, effects of prey concentration, and grazing impact. Aquat Microb Ecol 38:249–257Google Scholar
  22. Julou T, Burhardt B, Gebauer G, Berviller D, Damesin C, Selosse M-A (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and non-photosynthetic mutants of Cephalanthera damasonium. New Phytol 166:639–653PubMedCrossRefGoogle Scholar
  23. Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Vrålstad T, Ursing BM (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068; Persistent URL: http://www.unite.ut.ee/ Google Scholar
  24. Kron KA, Judd WS, Stevens PF, Crayn DM, Anderberg AA, Gadek PA, Quinn CJ, Luteyn JL (2002) Phylogenic classification of Ericaceae: molecular and morphological evidence. Bot Rev 68:335–423CrossRefGoogle Scholar
  25. Kunishi A, Hasegawa S, Hashimoto Y (2004) Effects of mycorrhiza on Pyrola incarnata growing in dark forest floor. In: Proceedings of the 51st annual meeting of the ecological society of Japan (JES51) (http://www.jes.ees.hokudai.ac.jp/program/proceedings/P1Poster03_e.html#P1–141c)
  26. Leake JR (2004) Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Curr Opin Plant Biol 7:422–428PubMedCrossRefGoogle Scholar
  27. Lihnell D (1942) Cenococcum graniforme als Mykorrhizabildner von Waldbäumen. Symb Bot Ups 5:1–18Google Scholar
  28. McKendrick SL, Leake JR, Taylor DL, Read DJ (2000) Symbiotic germination and development of mycoheterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548CrossRefGoogle Scholar
  29. Ohlsson KEA, Wallmark PH (1999) Novel calibration with correction for drift and non-linear response for continuous flow isotope ratio mass spectrometry applied to the determination of δ15N, total nitrogen, δ13C and total carbon in biological material. Analyst 124:571–577CrossRefGoogle Scholar
  30. Pfeffer PE, Douds DD, Bucking H, Schwartz DP, Shachar-Hill Y (2004) The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. New Phytol 163:617–627CrossRefGoogle Scholar
  31. Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179CrossRefGoogle Scholar
  32. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  33. Press MC, Phoenix GK (2005) Impacts of parasitic plants on natural communities. New Phytol 166:737–751PubMedCrossRefGoogle Scholar
  34. Queloz V, Grünig CR, Sieber TN, Holdenrieder O (2005) Monitoring the spatial and temporal dynamics of a community of the tree-root endophyte Phialocephala fortinii s.l. New Phytol 168:651–660PubMedCrossRefGoogle Scholar
  35. Read DJ (1983) The biology of mycorrhiza in the Ericales. Can J Bot 61:985–1004Google Scholar
  36. Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263CrossRefGoogle Scholar
  37. Richard F, Millot S, Gardes M, Selosse M-A (2005) Diversity and structuration by hosts of the below-ground mycorrhizal community in an old-growth Mediterranean forest dominated by Quercus ilex L. New Phytol 166:1011–1023PubMedCrossRefGoogle Scholar
  38. Robertson DC, Robertson JA (1982) Ultrastructure of Pterospora andromeda and Sarcodes sanguinea mycorrhizas. New Phytol 92:539–551CrossRefGoogle Scholar
  39. Robertson DC, Robertson JA (1985) Ultrastructural aspects of Pyrola mycorrhizae. Can J Bot 63:1089–1098Google Scholar
  40. Selosse M-A, Weiß M, Jany J-L, Tillier A (2002) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844PubMedCrossRefGoogle Scholar
  41. Selosse M-A, Faccio A, Scappaticci P, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426PubMedCrossRefGoogle Scholar
  42. Selosse M-A, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 11:621–628CrossRefGoogle Scholar
  43. Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82:1140–1165CrossRefGoogle Scholar
  44. Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582CrossRefGoogle Scholar
  45. Singh P, Carew GC (1990) Inland spruce cone rust of black spruce: effect on cone and seed yield, and seed quality. Eur J For Path 20:397–404Google Scholar
  46. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, LondonGoogle Scholar
  47. Stibor H, Sommer U (2003) Mixotrophy of a photosynthetic flagellate viewed from an optimal foraging perspective. Protist 154:91–98PubMedCrossRefGoogle Scholar
  48. Taylor AFS, Fransson PMA, Högberg P, Högberg MN, Plamboeck AH (2003) Species level patterns in C and N abundance of ectomycorrhizal and saprotrophic fungal sporocarps. New Phytol 159:757–774CrossRefGoogle Scholar
  49. Tedersoo L, Hansen K, Perry BA, Kjøller R (2006) Molecular and morphological diversity of pezizalean ectomycorrhiza. New Phytol 170:581–596PubMedCrossRefGoogle Scholar
  50. Trudell SA, Rygiewicz PT, Edmonds RL (2003) Nitrogen and carbon stable isotope abundances support the myco-heterotrophic nature and host-specificity of certain achlorophyllous plants. New Phytol 160:391–401CrossRefGoogle Scholar
  51. Villarreal-Ruiz L, Anderson IC, Alexander IJ (2004) Interaction between an isolate from the Hymenoscyphus ericae aggregate and roots of Pinus and Vaccinium. New Phytol 164:183–192CrossRefGoogle Scholar
  52. Wu B, Nara K, Hogetsu T (2001) Can 14C-labelled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytol 149:137–146CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Leho Tedersoo
    • 1
  • Prune Pellet
    • 2
  • Urmas Kõljalg
    • 1
  • Marc-André Selosse
    • 2
  1. 1.Institute of Botany and EcologyUniversity of TartuTartuEstonia
  2. 2.Centre d’Ecologie Fonctionnelle et Evolutive (CNRS, UMR 5175)Equipe Interactions BiotiquesMontpellier Cédex 5France

Personalised recommendations