Oecologia

, Volume 150, Issue 3, pp 393–397 | Cite as

Freezing tolerance in grasses along an altitudinal gradient in the Venezuelan Andes

  • Edjuly J. Márquez
  • Fermín Rada
  • Mario R. Fariñas
Ecophysiology

Abstract

The tropical high Andes experience greater daily temperature oscillations compared to seasonal ones as well as a high frequency of night frost occurrence year round. Survival of organisms, under such environmental conditions, has been determined by selective forces which have evolved into adaptations including avoidance or tolerance to freezing. These adaptations have been studied in different species of trees, shrubs and perennial herbs in páramo ecosystems, while they have not been considered in grasses, an important family of the páramo. In order to understand survival of Poaceae, resistance mechanisms were determined. The study was performed along an altitudinal gradient (2,500–4,200 m a.s.l.) in the páramo. Supercooling capacity and frost injury temperature were determined in nine species in order to establish cold resistance mechanisms. Grasses registered a very low supercooling capacity along the altitudinal gradient, with ice formation between −6 and −3°C. On the other hand, frost injury temperature oscillated between −18 and −7°C. Our results suggest that grasses exhibit freezing tolerance as their main cold resistance mechanism. Since grasses grow at ground level, where greatest heat loss takes place, tolerance may be related to this life form as reported for other small life forms.

Keywords

Injury temperature Poaceae Supercooling capacity Tropical high Andes 

References

  1. Alvizu PE (2004) Complejidad y respuesta funcional de la vegetación de páramo a lo largo de gradientes altitudinales. PhD dissertation. Postgrado en Ecología Tropical, ICAE, Universidad de Los Andes, MéridaGoogle Scholar
  2. Andrews CJ (1996) How do plants survive ice? Ann Biol 78:529–536Google Scholar
  3. Azócar A, Monasterio M (1980) Caracterización ecológica del clima en el páramo de Mucubají. In: Monasterio M (ed) Estudios ecológicos en los páramos andinos. Universidad de Los Andes, Mérida, pp 207–223Google Scholar
  4. Azócar A, Rada F, Goldstein G (1988) Freezing tolerance in Draba chionophila, a “miniature” caulescent rosette species. Oecologia 75:156–160CrossRefGoogle Scholar
  5. Beck E (1994) Cold tolerance in tropical alpine plants. In: Rundel P, Smith AP, Meinzer F (eds) Tropical alpine environments: plant form and function. Cambridge University Press, UK pp 77–110Google Scholar
  6. Beck E, Schulze E, Senser M, Scheibe R (1984) Equilibrium freezing of leaf water and extracellular ice formation in Afroalpine “giant rosette” plants. Planta 162:276–282CrossRefGoogle Scholar
  7. Beck E, Senser M, Scheibe R, Steiger H, Pongratz P (1982) Frost avoidance and freezing tolerance in Afroalpine “giant rosette” plants. Plant Cell Environ 5:215–222Google Scholar
  8. Earnshaw M, Carver K, Gunn T, Kerenga K, Harvey V, Griffiths H, Broameadow M (1990) Photosynthetic pathway, chilling tolerance and cell sap osmotic potencial values of grasses along an altitudinal gradient in Papua New Guinea. Oecologia 84:280–288Google Scholar
  9. Goldstein G, Rada F, Azócar A (1985) Cold hardiness and supercooling along an altitudinal gradient in Andean giant rosette species. Oecologia 68:147–152CrossRefGoogle Scholar
  10. Hedberg O (1964) Features of afroalpine plant ecology. Acta Phytogeogr Suec 49:1–144Google Scholar
  11. Körner C (1999) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. Kubien DS, Caemmerer S, Furbank RT, Sage RF (2003) C4 photosynthesis at low temperature. A study using transgenic plants with reduced amounts of Rubisco. Plant Physiol 132:1577–1585PubMedCrossRefGoogle Scholar
  13. Larcher W (1995) Physiological plant ecology, 3rd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. Levitt J (1972) Responses of plants to environmental stresses. Academic Press, LondonGoogle Scholar
  15. Long S (1983) C4 photosynthesis at low temperatures. Plant Cell Environ 6:345–363Google Scholar
  16. Márquez E (2002) Distribución altitudinal de gramíneas de páramo como respuesta a las rutas metabólicas y los mecanismos de resistencia a las bajas temperaturas. MSc dissertation. Postgrado en Ecología Tropical, ICAE, Universidad de Los Andes, MéridaGoogle Scholar
  17. Márquez E, Fariñas MR, Briceño B, Rada F (2004) Distribution of grasses along an altitudinal gradient in a Venezuelan paramo. Rev Chil Hist Nat 77:649–660CrossRefGoogle Scholar
  18. Melcher P, Goldstein G, Meinzer F, Minyard B, Giambelluca T, Lope L (1994) Determinants of thermal balance in the Hawaiian giant rosette plant, Argyroxiphium sandwicense. Oecologia 98:412–418CrossRefGoogle Scholar
  19. Pearcy RS (2001) Plant freezing damage. Ann Bot 87:417–424CrossRefGoogle Scholar
  20. Pittermann J, Sage RF (2001) The response of the high altitude C4 grass Muhlenbergia montana (Nutt.) A.S. Hitchc. to long- and short-term chilling. J Exp Bot 52:829–838PubMedGoogle Scholar
  21. Rada F, Goldstein G, Azócar A, Meinzer F (1985a) Freezing avoidance in Andean giant rosette plants. Plant Cell Environ 8:501–507CrossRefGoogle Scholar
  22. Rada F, Goldstein G, Azócar A, Meinzer F (1985b) Daily and seasonal osmotic changes in a tropical treeline species. J Exp Bot 36:989–1000Google Scholar
  23. Rada F, Goldstein G, Azócar A, Torres F (1987) Supercooling along an altitudinal gradient in Espeletia schultzii, a caulescent giant rosette species. J Exp Bot 38:491–497Google Scholar
  24. Rundel P (1994) Tropical alpine climates. In: Rundel P, Smith AP, Meinzer F (eds) Tropical alpine environments: plant form and function. Cambridge University Press, UK, pp 21–44Google Scholar
  25. Sage R (2002) Variation in the k cat of Rubisco in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature. J Exp Bot 53:609–620PubMedCrossRefGoogle Scholar
  26. Sage R, Sage T (2002) Microsite characteristics of Muhlenbergia richardsonis (Trin.) Rydb., an alpine C4 grass from the White Mountains, California. Oecologia 132:501–508CrossRefGoogle Scholar
  27. Sage RF, Kubien DS (2003) Quo vadis C4 ? An ecophysiological perspective on global change and the future of C4 plants. Photosyn Res 77:209–225PubMedCrossRefGoogle Scholar
  28. Sakai A, Larcher W (1987) Frost survival of plants: responses and adaptation to freezing stress. Springer Berlin Heidelberg New YorkGoogle Scholar
  29. Sarmiento G (1986) Ecological features of climate in high tropical mountains. In: Vuillemier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, Oxford, pp 11–45Google Scholar
  30. Schwarz A, Redmann R (1987) C4 grasses from the boreal forest region of northwestern Canada. Can J Bot 66:2424–2430CrossRefGoogle Scholar
  31. Squeo F, Rada F, Azócar A, Goldstein G (1991) Freezing tolerance and avoidance in high tropical Andean plants: is it equally represented in species with different plant height? Oecologia 86:378–382CrossRefGoogle Scholar
  32. Squeo F, Rada F, García C, Ponce M, Rojas A, Azócar A (1996) Cold resistance mechanisms in high desert Andean plants. Oecologia 105:552–555CrossRefGoogle Scholar
  33. Steponkus P, Lanphear F (1967) Refinement of the triphenyl tetrazolium chloride method of determining cold injury. Plant Physiol 42:1423–1426PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Edjuly J. Márquez
    • 1
    • 2
  • Fermín Rada
    • 1
  • Mario R. Fariñas
    • 1
  1. 1.Instituto de Ciencias Ambientales y Ecológicas (ICAE), Facultad de CienciasUniversidad de Los AndesMéridaVenezuela
  2. 2.Universidad Nacional Experimental Francisco de MirandaCentro de Investigación en Ecología y Zonas Aridas (CIEZA)Edo. FalcónVenezuela

Personalised recommendations