Oecologia

, Volume 150, Issue 4, pp 643–654 | Cite as

Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton

  • Stella Angela Berger
  • Sebastian Diehl
  • Herwig Stibor
  • Gabriele Trommer
  • Miriam Ruhenstroth
  • Angelika Wild
  • Achim Weigert
  • Christoph Gerald Jäger
  • Maren Striebel
Global change and conservation Ecology

Abstract

In many lakes, the most conspicuous seasonal events are the phytoplankton spring bloom and the subsequent clear-water phase, a period of low-phytoplankton biomass that is frequently caused by mesozooplankton (Daphnia) grazing. In Central European lakes, the timing of the clear-water phase is linked to large-scale climatic forcing, with warmer winters being followed by an earlier onset of the clear-water phase. Mild winters may favour an early build-up of Daphnia populations, both directly through increased surface temperatures and indirectly by reducing light limitation and enhancing algal production, all being a consequence of earlier thermal stratification. We conducted a field experiment to disentangle the separate impacts of stratification depth (affecting light supply) and temperature on the magnitude and timing of successional events in the plankton. We followed the dynamics of the phytoplankton spring bloom, the clear-water phase and the spring peak in Daphnia abundance in response to our experimental manipulations. Deeper mixing delayed the timing of all spring seasonal events and reduced the magnitudes of the phytoplankton bloom and the subsequent Daphnia peak. Colder temperatures retarded the timing of the clear-water phase and the subsequent Daphnia peak, whereas the timing of the phytoplankton peak was unrelated to temperature. Most effects of mixing depth (light) and temperature manipulations were independent, effects of mixing depth being more prevalent than effects of temperature. Because mixing depth governs both the light climate and the temperature regime in the mixed surface layer, we propose that climate-driven changes in the timing and depth of water column stratification may have far-reaching consequences for plankton dynamics and should receive increased attention.

Keywords

Algal spring bloom Clear-water phase Daphnia hyalina Enclosure experiment Phytoplankton Zooplankton 

Supplementary material

442_2006_550_MOESM1_ESM.doc (598 kb)
Supplementary material

References

  1. Berger SA, Diehl S, Kunz TJ, Albrecht D, Oucible AM, Ritzer S (2006) Light supply, plankton biomass and seston stoichiometry in a gradient of lake mixing depths. Limnol Oceanogr 51:1898–1905CrossRefGoogle Scholar
  2. Càceres CE (1998) Interspecific variation in the abundance, production, and emergence of Daphnia diapausing eggs. Ecology 79:1699–1710CrossRefGoogle Scholar
  3. Cushing, DH (1974) Sea Fisheries Research. Wiley, New YorkGoogle Scholar
  4. Dawidowicz P, Loose C (1992) Metabolic costs during predator-induced diel vertical migration of Daphnia. Limnol Oceanogr 37:1589–1595Google Scholar
  5. Diehl S (2002) Phytoplankton, light, and nutrients in a gradient of mixing depths: theory. Ecology 83:386–398Google Scholar
  6. Diehl S, Berger S, Ptacnik R, Wild A (2002) Phytoplankton, light, and nutrients in a gradient of mixing depths: field experiments. Ecology 83:399–411Google Scholar
  7. Diehl S, Berger SA, Wöhrl R (2005) Flexible nutrient stoichiometry mediates environmental influences on phytoplankton and its abiotic resources. Ecology 86:2931–2945Google Scholar
  8. Edwards M, Richardson AJ (2004) The impact of climate change on the phenology of the plankton commumity and trophic mismatch. Nature 430:881–884PubMedCrossRefGoogle Scholar
  9. Gaedke U, Ollinger D, Bäuerle E, Straile D (1998a) The impact of interannual variability in hydrodynamic conditions on the plankton development in Lake Constance in spring and summer. Arch Hydrobiol Spec Issues Adv Limnol 53:565–585Google Scholar
  10. Gaedke U, Ollinger D, Kirner P, Bäuerle E (1998b) The influence of weather conditions on the seasonal plankton development in a large and deep lake (L. Constance). In: George DG, Jones JG, Punochár JG, Reynolds CS, Sutcliffe DW (eds) Management of Lakes and Reservoirs during global climate change. Kluwer, Dordrecht, pp 71–84Google Scholar
  11. Greve W, et al. (2001) Predicting the seasonality of North Sea zooplankton. Senkenbergiana Maritima 31:263–268CrossRefGoogle Scholar
  12. Haas K (2002) Einfluss der Tiefe des Epilimnions auf experimentelle Phytoplanktonsysteme mit besonderem Augenmerk auf dem Zooplankton. Diploma thesis, Ludwig-Maximilians-Universität, München (in German)Google Scholar
  13. Harrington R, Woiwod I, Sparks T (1999) Climate change and trophic interaction. Trends Ecol Evol 14:146–150PubMedCrossRefGoogle Scholar
  14. Haupt F (2004) Auswirkungen der Epilimniontiefe auf Phytoplankton-Daphnien-Interaktionen mit Schwerpunkt Zooplankton. Diploma thesis, Ludwig-Maximilians-Universität, München (in German)Google Scholar
  15. Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337–344PubMedCrossRefGoogle Scholar
  16. Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61PubMedCrossRefGoogle Scholar
  17. Huisman J, Weissing FJ (1999) Critical depth and critical turbulence: two different mechanisms for the development of phytoplankton blooms. Limnol Oceanogr 44:1781–1787Google Scholar
  18. Huppert A, Blasius B, Stone L (2002) A model of phytoplankton blooms. Am Nat 159:156–171CrossRefPubMedGoogle Scholar
  19. IPCC (2001) Climate change 2001: synthesis report. In: Watson RT, the Core Writing Team (eds) Cambridge University Press, Cambridge, UKGoogle Scholar
  20. Kunz TJ (2005) Effects of mixing depth, turbulent diffusion and nutrient enrichment on enclosed marine plankton communities. Dissertation, Ludwig-Maximilians-Universität, MünchenGoogle Scholar
  21. Lampert W (1977) Studies on the carbon balance of Daphnia pulex De Geer as related to environmental conditions. III. Production and production efficiency. Arch Hydrobiol 48:336–360Google Scholar
  22. Lampert W, Fleckner W, Rai H, Taylor BE (1986) Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnol Oceanogr 31:478–490Google Scholar
  23. Lampert W, Schober U (1978) Das regelmäßige Auftreten von Frühjahrs-Algenmaximum und Klarwasserstadium im Bodensee als Folge von klimatischen Bedingungen und Wechselwirkungen zwischen Phyto- und Zooplankton. Arch Hydrobiol 82:364–386Google Scholar
  24. Lynch M, Weider LJ, Lampert W (1986) Measurement of the carbon balance in Daphnia. Limnol Oceanogr 31:17–33Google Scholar
  25. Mackas DL, Goldblatt R, Lewis AG (1998) Interdecadal variation in developmental timing of Neocalanus plumchrus populations at Ocean Station P in the subarctic North Pacific. Can J Fish Aquat Sci 55:1878–1893CrossRefGoogle Scholar
  26. Mazumder A, Taylor WD (1994) Thermal structure of lakes varying in size and water clarity. Limnol Oceanogr 39:968–976CrossRefGoogle Scholar
  27. McCauley E, Nisbet RM, de Roos AM, Murdoch WW, Guerney WSC (1996) Structured population models of herbivorous zooplankton. Ecol Monogr 66:479–501CrossRefGoogle Scholar
  28. Muck P, Lampert W (1984) An experimental study on the importance of food conditions for the relative abundance of calanoid copepods and cladocerans. Arch Hydrobiol Suppl 66:157–179Google Scholar
  29. Murdoch WW, Nisbet RM, McCauley E, deRoos AM, Gurney WSC (1998) Plankton abundance and dynamics across nutrient levels: tests of hypotheses. Ecology 79:1339–1356CrossRefGoogle Scholar
  30. O’Brien WJ (1974) The dynamics of nutrient limitation of phytoplankton algae: a model reconsidered. Ecology 55:135–141CrossRefGoogle Scholar
  31. Orcutt JD Jr, Porter KG (1983) Diel vertical migration by zooplankton: constant and fluctuating temperature effects on life history parameters in Daphnia. Limnol Oceanogr 28:720–730CrossRefGoogle Scholar
  32. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42PubMedCrossRefGoogle Scholar
  33. Ptacnik R, Diehl S, Berger S (2003) Performance of sinking and nonsinking phytoplankton taxa in a gradient of mixing depths. Limnol Oceanogr 48:1903–1912CrossRefGoogle Scholar
  34. Reichwaldt ES, Wolf ID, Stibor H (2005) Effects of fluctuating temperature regime experienced by Daphnia during dial vertical migration on Daphnia life history parameters. Hydrobiologia 543:199–205CrossRefGoogle Scholar
  35. Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, UKGoogle Scholar
  36. Reynolds CS (1989) Physical determinants of phytoplankton succession. In: Sommer U (ed) Plankton ecology: succession in plankton communities. Springer, Berlin Heidelberg New York, pp 9–56Google Scholar
  37. Richardson AJ, Schoeman DS (2004) Climate impact of plankton ecosystems in the Northeast Atlantic. Science 305:1609–1612PubMedCrossRefGoogle Scholar
  38. Rinke K, Vijverberg J (2005) A model approach to evaluate the effect of temperature and food concentration on individual life-history and population dynamics of Daphnia. Ecol Model 186:326–344CrossRefGoogle Scholar
  39. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60PubMedCrossRefGoogle Scholar
  40. Sarnelle O (1992) Nutrient enrichment and grazer effects on phytoplankton in lakes. Ecology 73:551–560CrossRefGoogle Scholar
  41. Sarnelle O (1993) Herbivore effects on phytoplankton succession in a eutrophic lake. Ecol Monogr 63:129–149CrossRefGoogle Scholar
  42. Sarnelle O (2003) Nonlinear effects of an aquatic consumer: causes and consequences. Am Nat 161:478–496PubMedCrossRefGoogle Scholar
  43. Scheffer M, Straile D, van Nes EH, Hosper H (2001) Climatic warming causes regime shifts in lake food webs. Limnol Oceanogr 46:1780–1783CrossRefGoogle Scholar
  44. Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471Google Scholar
  45. Stenseth NC, Mysterud A (2002) Climate, changing phenology, and other life history traits: nonlinearity and match-mismatch to the environment. Proc Natl Acad Sci USA 99:13379–13381PubMedCrossRefGoogle Scholar
  46. Straile D (2000) Meteorological forcing of plankton dynamics in a large and deep continental European lake. Oecologia 122:44–50CrossRefGoogle Scholar
  47. Straile D (2002) North Atlantic Oscillation synchronizes food-web interactions in central European lakes. Proc R Soc Lond B 269:391–395CrossRefGoogle Scholar
  48. Straile D, Adrian R (2000) The North Atlantic Oscillation and plankton dynamics in two European lakes – two variations on a general theme. Global Change Biol 6:663–670CrossRefGoogle Scholar
  49. Thomas DW, Blondel J, Perret P, Lambrechts MM, Speakman JR (2001) Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds. Science 291:2598–2600PubMedCrossRefGoogle Scholar
  50. Urabe J, Watanabe Y (1991) Effect of food concentration on the assimilation efficiency and production efficiencies of Daphnia galeata. Funct Ecol 5:635–641CrossRefGoogle Scholar
  51. Visser M, Holleman LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc R Soc Lond Ser B 268:289–294CrossRefGoogle Scholar
  52. Wetzel RG (1983) Limnology, 2nd edn. Sounders College Publishing, Philadelphia, PAGoogle Scholar
  53. Weyhenmeyer G, Blencker T, Petterson K (1999) Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnol Oceanogr 44:1788–1792CrossRefGoogle Scholar
  54. Winder M, Schindler DE (2004a) Climatic effects on the phenology of lake processes. Global Change Biol 10:1844–1856CrossRefGoogle Scholar
  55. Winder M, Schindler DE (2004b) Climate change uncouples trophic interactions in a lake ecosystem. Ecology 85:56–62Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Stella Angela Berger
    • 1
  • Sebastian Diehl
    • 1
  • Herwig Stibor
    • 1
  • Gabriele Trommer
    • 1
  • Miriam Ruhenstroth
    • 1
  • Angelika Wild
    • 1
  • Achim Weigert
    • 1
  • Christoph Gerald Jäger
    • 1
  • Maren Striebel
    • 1
  1. 1.Department Biologie II Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany

Personalised recommendations