Oecologia

, Volume 145, Issue 3, pp 454–461 | Cite as

Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests

  • Jochen Schöngart
  • Maria Teresa F. Piedade
  • Florian Wittmann
  • Wolfgang J. Junk
  • Martin Worbes
Ecosystem Ecology

Abstract

Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) is a dominant legume tree species occurring at low elevations of nutrient-poor black-water (igapó) and nutrient-rich white-water floodplain forests (várzea) of Amazonia. As a consequence of the annual long-term flooding this species forms distinct annual tree rings allowing dendrochronological analyses. From both floodplain types in Central Amazonia we sampled cores from 20 large canopy trees growing at identical elevations with a flood-height up to 7 m. We determined tree age, wood density (WD) and mean radial increment (MRI) and synchronized ring-width patterns of single trees to construct tree-ring chronologies for every study site. Maximum tree age found in the igapó was more than 500 years, contrary to the várzea with ages not older than 200 years. MRI and WD were significantly lower in the igapó (MRI=1.52±0.38 mm year−1, WD=0.39±0.05 g cm−3) than in the várzea (MRI=2.66±0.67 mm year−1, WD=0.45±0.03 g cm−3). In both floodplain forests we developed tree-ring chronologies comprising the period 1857–2003 (n=7 trees) in the várzea and 1606–2003 (n=13 trees) in the igapó. The ring-width in both floodplain forests was significantly correlated with the length of the terrestrial phase (vegetation period) derived from the daily recorded water level in the port of Manaus since 1903. In both chronologies we found increased wood growth during El Niño events causing negative precipitation anomalies and a lower water discharge in Amazonian rivers, which leads to an extension of the terrestrial phase. The climate signal of La Niña was not evident in the dendroclimatic proxies.

Keywords

Dendrochronology Tree age Radial increment Wood density ENSO 

References

  1. Adis J, Latif M (1996) Amazonian arthropods responds to El Niño. Biotropica 28(3):403–408CrossRefGoogle Scholar
  2. Ayres JM (1993) As Matas da Várzea do Mamirauá. MCT/CNPq, Sociedade Civíl Mamirauá, Brasília, 90 ppGoogle Scholar
  3. Baillie MGL, Pilcher JR (1973) A simple crossdating program for tree-ring research. Tree Ring Bull 33:7–14Google Scholar
  4. Brown PM (1994) Oldlist: a database of maximum tree ages. In: Dean JS, Meko DM, Swetnam TW (eds) Tree rings, environment, and humanity: relationships and processes radiocarbon 1996. Department of Geoscience, The University of Arizona, Tuscon, pp 727–731Google Scholar
  5. Campbell DG, Daly DC, Prance GT, Maciel UN (1986) Quantitative ecological inventory of terra firme and várzea tropical forest on the Rio Xingú, Brazilian Amazon. Brittonia 38(4):369–393CrossRefGoogle Scholar
  6. Colonello G (1990) A Venezuelan floodplain study on the Orinoco River. For Ecol Manag 33/34:103–124CrossRefGoogle Scholar
  7. Cook ER, Briffa K (1990) Data analysis. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology, applications in the environmental sciences. Kluwer, Dordrecht Boston London, pp 97–162Google Scholar
  8. Dallmeier F, Kabel M, Foster RB (1996) Floristic composition, diversity, mortality and recruitment on different substrates: lowland tropical forest, Pakitza, Río Manu, Peru. In: Wilson DE, Sandoval A (eds) Manu—the Biodiversity of Southern Peru. Smithsonian Institute, Washington DC, pp 61–77Google Scholar
  9. De Simone O, Müller E, Junk WJ, Schmidt W (2002) Adaptations of Central Amazon tree species to prolonged flooding: root morphology and leaf longevity. Plant Biol 4:515–522CrossRefGoogle Scholar
  10. Dezzeo N, Worbes M, Ishii I, Herrera R (2003) Growth rings analysis of four tropical tree species in seasonally flooded forest of the Mapire River, a tributary of the lower Orinoko River, Venezuela. Plant Ecol 168:165–175CrossRefGoogle Scholar
  11. Ferreira LV (1991) O Efeito do Periodo de Inundação na Zonação de Comunidades, Fenologia e Regeneração em uma Floresta de Igapó na Amazônia Central. MSc Thesis, INPA, Manaus, 158 ppGoogle Scholar
  12. Junk WJ (1993) Wetlands of the tropical South America. In: Whigham DF, Hejny S, Dykyjova D (eds) Wetlands of the World. Kluwer, The Netherlands, pp 679–739Google Scholar
  13. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain-systems. In: Dodge DP (ed) Proceedings of the international large river symposium, vol 106. Canadian Special Publication of Fisheries and Aquatic Sciences, pp 110–127Google Scholar
  14. Klinge H, Adis J, Worbes M (1996) The vegetation of a seasonal várzea forest in the lower Solimões River, Brazilian Amazonia. Acta Amazonica 25(3/4):201–220Google Scholar
  15. Kreibich H (2002) N2 fixation and denitrification in a floodplain forest in Central Amazonia, Brazil. PhD Thesis, University of Marburg, 163 ppGoogle Scholar
  16. Loureiro AA, Silva MF (1968) Catálogo das Madeiras da Amazônia. Superintendência do Desenvolvimento da Amazônia (SUDAM), Belém, vol 1, 421 pp, vol 2, 403 ppGoogle Scholar
  17. Lusk CH (1999) Long-lived light demanding emergents in southern temperate forests: the case of Weinmannia trichosperma (Cunoniaceae) in Chile. Plant Ecol 140:111–115CrossRefGoogle Scholar
  18. Meyer U (1991) Feinwurzelsysteme und Mykorrhizatypen als Anpassungsmechanismen in zentralamazonischen Überschwemmungswäldern, igapó und várzea. PhD Thesis, University of Hohenheim, 206 ppGoogle Scholar
  19. Nebel G, Kvist LP, Vanclay JK, Christensen H, Freitas L, Ruíz J (2001) Structure and floristic composition of floodplain forests in the Peruvian Amazon: I Overstorey. For Ecol Manag 150:27–57CrossRefGoogle Scholar
  20. Parolin P (2001) Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia 128:326–335CrossRefGoogle Scholar
  21. Parolin P, Ferreira LV, Junk WJ (1998) Central Amazonia floodplains: effect of two water types on the wood density of trees. Verh Int Verein Limnol 26:1106–1112Google Scholar
  22. Piedade MTF (1985) Ecologia e Biologia Reprodutiva de Astrocaryum jauari Mart (Palmae) como Exemplo de População Adaptada as Áreas Inundáveis do Rio Negro (Igapós). MSc Thesis, FUA/INPA, Manaus, 184 ppGoogle Scholar
  23. Pilcher JR (1990) Sample preparation, cross-dating, and measurement. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology, applications in the environmental sciences. Kluwer, Dordrecht Boston London, pp 40–51Google Scholar
  24. Prance GT (1979) Notes on the vegetation of Amazonia. III. Terminology of Amazonian forest types subjected to inundation. Brittonia 31:26–38CrossRefGoogle Scholar
  25. Prance GT (1989) American tropical forests. In: Lieth H, Werger MJA (eds) Tropical rain forest ecosystems. Ecosystems of the World, vol 14B. Elsevier, Amsterdam, pp 99–132Google Scholar
  26. Revilla JDC (1991) Aspectos Florísticos e Estruturais da Floresta Inundável (Várzea) do Baixo Solimões, Amazonas, Brasil. PhD Thesis, INPA, Manaus, 115 ppGoogle Scholar
  27. Schlüter U-B (1989) Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz zweier charakteristischer Baumarten (Astrocaryum jauari und Macrolobium acaciaefolium) des Weiss- und Schwarzwasserüberschwemmungswaldes bei Manaus. – Ein Beitrag zur Ökosystemanalyse von várzea und igapó Zentralamazoniens. PhD Thesis, University of Kiel, 147 ppGoogle Scholar
  28. Schlüter U-B, Furch B (1992) Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz des Baumes Macrolobium acaciaefolium, charakteristisch für die Weiss- und Schwarzwasserüberschwemmungswälder bei Manaus, Amazonas. Amazoniana XII(1):51–69Google Scholar
  29. Schöngart J (2003) Dendrochronologische Untersuchungen in Überschwemmungswäldern der várzea Zentralamazoniens. Göttinger Beitr Land Forstwirtschaft Tropen Subtropen 149:1–257Google Scholar
  30. Schöngart J, Piedade MTF, Ludwigshausen S, Horna V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597CrossRefGoogle Scholar
  31. Schöngart J, Junk WJ, Piedade MTF, Ayres JM, Hüttermann A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño-southern oscillation effect. Global Change Biol 10:683–692CrossRefGoogle Scholar
  32. Schweingruber FH (1988) Tree rings. Reidel, Dordrecht, 276 ppGoogle Scholar
  33. Schweingruber FH (1996) Tree rings and environment—dendroecology. Birmensdorf, Swiss Federal Institute for Forest, Snow and Landscape Research, WSL/FNP, Berne Stuttgart Vienna, 609 ppGoogle Scholar
  34. Sioli H (1954) Beiträge zur regionalen Limnologie des Amazonasgebietes. Arch Hydrobiol 49:441–518Google Scholar
  35. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777CrossRefGoogle Scholar
  36. Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14:1697–1701CrossRefGoogle Scholar
  37. Urrego LE (1997) Floodable forests in the Middle Caquetá region: characterization and succession. Stud Colomb Amazonia XIV:288Google Scholar
  38. Waldhoff D, Junk WJ, Furch B (1998) Responses of three Central Amazonian tree species to drought and flooding under controlled conditions Int J Ecol Environ Sci 24:237–252Google Scholar
  39. Wittmann F, Junk WJ (2003) Sapling communities in Amazonian white-water forests. J Biogeogr 30(10):1533–1544CrossRefGoogle Scholar
  40. Worbes M (1983) Vegetationskundliche Untersuchungen zweier Überschwemungswälder in Zentralamazonien. Amazoniana VIII(1):47–65Google Scholar
  41. Worbes M (1986) Lebensbedingungen und Holzwachstum in zentralamazonischen Überschwemmungswäldern. Scr Geobot 17:1–112Google Scholar
  42. Worbes M (1989) Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the Neotropics. IAWA Bull ns 10(2):109–122Google Scholar
  43. Worbes M (1994) Grundlagen und Anwendungen der Jahresringforschung in den Tropen. Habilitationsschrift, University of Hamburg, 194 ppGoogle Scholar
  44. Worbes M (1995) How to measure growth dynamics in tropical trees—a review. IAWA J 16(4):337–351Google Scholar
  45. Worbes M (1996) Rhythmisches Wachstum und anatomisch-morphologische Anpassungen an Lebensstrategien von Bäumen in zentralamazonischen Überschwemmungswäldern. Mitt Dtsch Dendrol Des 82:155–172Google Scholar
  46. Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The Central Amazon floodplains. Ecology of a pulsing system. Springer, Berlin Heidelberg New York, pp 223–266Google Scholar
  47. Worbes M, Junk WJ (1989) Dating tropical trees by means of 14C from bomb tests. Ecology 70(2):503–507CrossRefGoogle Scholar
  48. Worbes M, Junk WJ (1999) How old are tropical trees? The persistence of a myth. IAWA J 20(3):255–260Google Scholar
  49. Worbes M, Klinge H, Revilla JD, Martius C (1992) On the dynamics, floristic subdivision and geographical distribution of várzea forests in Central Amazonia. J Veg Sci 3:553–564CrossRefGoogle Scholar
  50. Worbes M, Klosa D, Lewark S (1995) Rohdichtestruktur von Jahresringen tropischer Hölzer aus zentralamazonischen Überschwemmungswäldern. Holz Roh Werkstoff 53:63–67CrossRefGoogle Scholar
  51. Ziburski A (1991) Dissemination, Keimung und Etablierung einiger Baumarten der Überschwemmungswälder Amazoniens. Tropische Subtropische Pflanzenwelt 77:1–96Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Jochen Schöngart
    • 1
    • 2
  • Maria Teresa F. Piedade
    • 2
  • Florian Wittmann
    • 1
  • Wolfgang J. Junk
    • 1
  • Martin Worbes
    • 3
  1. 1.Max-Planck-Institute for LimnologyWG Tropical EcologyPlönGermany
  2. 2.Instituto Nacional de Pesquisas da Amazônia/Max-Planck ProjectManaus-AMBrazil
  3. 3.Institute of Agronomy in the TropicsUniversity of GöttingenGöttingenGermany

Personalised recommendations