, Volume 145, Issue 1, pp 87–99 | Cite as

Tree allometry and improved estimation of carbon stocks and balance in tropical forests

  • J. ChaveEmail author
  • C. Andalo
  • S. Brown
  • M. A. Cairns
  • J. Q. Chambers
  • D. Eamus
  • H. Fölster
  • F. Fromard
  • N. Higuchi
  • T. Kira
  • J.-P. Lescure
  • B. W. Nelson
  • H. Ogawa
  • H. Puig
  • B. Riéra
  • T. Yamakura
Ecosystem ecology


Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees ≥ 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and old-growth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5–6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.


Biomass Carbon Plant allometry Tropical forest 



We thank T. Yoneda for his help with the Pasoh dataset, C. Jordan and H.L. Clark for their help with the San Carlos dataset, R. Condit, S.J. DeWalt, J. Ewel, P.J. Grubb, K. Lajtha, and D. Sheil for comments on earlier versions of the manuscript, the CTFS Analytical Workshop (Fushan, Taiwan) participants for their feedback on this work, F. Bongers, S. Schnitzer, and E.V.J. Tanner for correspondence, and the team of librarians in Toulouse for their assistance. This manuscript has not been subject to the EPA peer review process and should not be construed to represent Agency policy.

Supplementary material

442_2005_100_MOESM1_ESM.pdf (34 kb)
Supplementary material


  1. Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Lloyd J, Monteagudo A, Neill DA, Patino S, Pitman NCA, Silva JNM, Vasquez Martinez R (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Change Biol 10:545–562CrossRefGoogle Scholar
  2. Baskerville G (1972) Use of logarithmic regression in the estimation of plant biomass. Can J Forest Res 2:49–53CrossRefGoogle Scholar
  3. Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer UN FAO Forestry Paper 134, Rome, pp 55.
  4. Brown S, Lugo AE (1982) The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica 14:161–187CrossRefGoogle Scholar
  5. Brown S, Gillespie A, Lugo AE (1989) Biomass estimation methods for tropical forests with applications to forest inventory data. For Sci 35:881–902Google Scholar
  6. Brown S, Schroeder PE (1999) Spatial patterns of aboveground production and mortality of woody biomass for eastern US forests. Ecol Appl 9:968–980Google Scholar
  7. Burnham KP, Anderson DR (2002) Model selection and inference. A practical information-theoretic approach, 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. Cannell MGR (1984) Woody biomass of forest stands. For Ecol Manage 8:299–312CrossRefGoogle Scholar
  9. Carvalho JA, Santos JM, Santos JC, Leitão MM, Higuchi N (1995) A tropical forest clearing experiment by biomass burning in the Manaus region. Atm Environ 29:2301–2309CrossRefGoogle Scholar
  10. Carvalho JA, Costa FS, Veras CAG, Sandberg DV, Alvarado EC, Gielow R, Serra AM, Santos JC (2001) Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in Northern Mato Grosso, Brazil. J Geophys Res 106(D16):17877–17887CrossRefGoogle Scholar
  11. Chambers JQ, Higuchi N, Schimel JP (1998) Ancient trees in Amazonia. Nature 391:135–136CrossRefGoogle Scholar
  12. Chambers JQ, Higuchi N, Tribuzy ES, Trumbore SE (2001a) Carbon sink for a century. Nature 410:429PubMedCrossRefGoogle Scholar
  13. Chambers JQ, dos Santos J, Ribeiro RJ, Higuchi N (2001b) Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. For Ecol Manage 152:73–84CrossRefGoogle Scholar
  14. Chave J, Riéra B, Dubois MA (2001) Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. J Trop Ecol 17:79–96CrossRefGoogle Scholar
  15. Chave J, Condit R, Lao S, Caspersen JP, Foster RB, Hubbell SP (2003) Spatial and temporal variation in biomass of a tropical forest: results from a large census plot in Panama. J Ecol 91:240–252CrossRefGoogle Scholar
  16. Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004) Error propagation and scaling for tropical forest biomass estimates. Philos Trans Royal Soc B 359:409–420CrossRefGoogle Scholar
  17. Clark DB, Clark DA (2000) Landscape-scale variation in forest structure and biomass in a tropical rain forest. For Ecol Manag 137:185–198CrossRefGoogle Scholar
  18. Clark DA, Brown S, Kicklighter D, Chambers JQ, Thomlinson JR, Ni J (2001) Measuring net primary production in forests: concepts and field methods. Ecol Appl 11:356–370CrossRefGoogle Scholar
  19. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836CrossRefGoogle Scholar
  20. Condit R (1998) Tropical forest census plots. Springer, Berlin Heidelberg New York, p 211Google Scholar
  21. Cormier KL, Reich RM, Czaplewski RL, Bechtold WA (1992) Evaluation of weighted regression and sample in developing a taper model for loblolly pine. For Ecol Manage 53:65–76CrossRefGoogle Scholar
  22. Crow TR (1978) Common regressions to estimate tree biomass in tropical stands. For Sci 24:110–114Google Scholar
  23. Cunia T (1987) Error of forest inventory estimates: its main components. In: Wharton EH, Cunia T (eds) Estimating tree biomass regressions and their error. USDA For Serv Gen Tech Rep NE-117, p 303Google Scholar
  24. Dawkins HC (1961) Estimating total volume of some Caribbean trees. Caribb For 22:62–63Google Scholar
  25. Duan N (1983) Smearing estimate: a non-parametric retransformation method. J Am Stat Assoc 78:605–610CrossRefGoogle Scholar
  26. Elias M, Potvin C (2003) Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species. Can J For Res 33:1039–1045CrossRefGoogle Scholar
  27. Grace J (2004) Understanding and managing the global carbon cycle. J Ecol 92:189–202CrossRefGoogle Scholar
  28. Gray HR (1966) Principles of forest tree and crop volume growth: a mensuration monograph. Aust Bull For Timber Bur 42Google Scholar
  29. Houghton RA (2003) Why are estimates of the terrestrial carbon balance so different? Glob Change Biol 9:500–509CrossRefGoogle Scholar
  30. Houghton RA, Lawrence KL, Hackler JL, Brown S (2001) The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Glob Change Biol 7:731–746CrossRefGoogle Scholar
  31. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108PubMedCrossRefGoogle Scholar
  32. Kato R, Tadaki Y, Ogawa H (1978) Plant biomass and growth increment studies in Pasoh forest. Malayan Nat J 30:211–224Google Scholar
  33. Lugo AE, Brown S (1986) Steady state ecosystems and the global carbon cycle. Vegetatio 68:83–90Google Scholar
  34. Madgwick HAI, Satoo T (1975) On estimating the above ground weights of tree stands. Ecology 56:1446–1450CrossRefGoogle Scholar
  35. Malhi Y, Baker TR, Phillips OL, Almeida S, Alvarez E, Arroyo L, Chave J, Czimczik CI, Di Fiore A, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Montoya LMM, Monteagudo A, Neill DA, Nunez Vargas P, Patiño S, Pitman NCA, Quesada CA, Silva JNM, Lezama AT, Vasques Martinez R, Terborgh J, Vinceti B, Lloyd J (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Glob Change Biol 10:563–591CrossRefGoogle Scholar
  36. McMahon TA, Kronauer RE (1976) Tree structures: deducing the principles of mechanical design. J theor Biol 59:443–466PubMedCrossRefGoogle Scholar
  37. Midgley JJ (2003) Is bigger better in plants? The hydraulic costs of increasing size in trees. Trends Evol Ecol 18:5–6CrossRefGoogle Scholar
  38. Nelson BW, Mesquita R, Pereira JLG, de Souza SGA, Batista GT, Couto LB (1999) Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. For Ecol Manage 117:149–167CrossRefGoogle Scholar
  39. Niklas KJ (1995) Size-dependent allometry of tree height, diameter and trunk-taper. Ann Bot 75:217–227CrossRefGoogle Scholar
  40. Niklas KJ (1997) Mechanical properties of black locust (Robinia pseudoacacia L) wood. Size- and age-dependent variations in sap- and heartwood. Ann Bot 79:265–272CrossRefGoogle Scholar
  41. Ogawa H, Yoda K, Ogino K, Kira T (1965) Comparative ecological studies on three main types of forest vegetation in Thailand II Plant biomass. Nat Life Southeast Asia 4:49–80Google Scholar
  42. de Oliveira AA, Mori SA (1999) A central Amazonian terra firme forest I. High tree species richness on poor soils. Biodiv Conserv 8:1219–1244CrossRefGoogle Scholar
  43. Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci 45:573–593Google Scholar
  44. Phillips OL, Malhi Y, Higuchi N, Laurance WF, Nuñez PV, Vásquez RM, Laurance SG, Ferreira LV, Stern M, Brown S, Grace J (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442PubMedCrossRefGoogle Scholar
  45. Phillips OL, Malhi Y, Vinceti B, Baker T, Lewis SL, Higuchi N, Laurance WF, Núñez VP, Vásquez MR, Laurance SG, Ferreira LV, Stern MM, Brown S, Grace J (2002) Changes in the biomass of tropical forests: evaluating potential biases. Ecol Appl 12:576–587CrossRefGoogle Scholar
  46. Reyes G, Brown S, Chapman J, Lugo AE (1992) Wood densities of tropical tree species. United States Department of Agriculture, Forest Service Southern Forest Experimental Station, New Orleans, Louisiana. General Technical Report SO-88Google Scholar
  47. Roy J, Saugier B, Mooney HA (2001) Terrestrial global productivity. Academic, San DiegoGoogle Scholar
  48. Saldarriaga JG, West DC, Tharp ML, Uhl C (1988) Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. J Ecol 76:938–958CrossRefGoogle Scholar
  49. Schumacher FX, Hall FS (1933) Logarithmic expression of timber-tree volume. J Agric Res 47:719–734Google Scholar
  50. Sheil D (1995) A critique of permanent plot methods and analysis with examples from Budongo forest, Uganda. For Ecol Manag 77:11–34CrossRefGoogle Scholar
  51. Shepashenko D, Shvidenko A, Nilsson S (1998) Phytomass (live biomass) and carbon of Siberian forests. Biomass Bioenerg 14:21–31CrossRefGoogle Scholar
  52. Sherman RE, Fahey TJ, Martinez P (2003) Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems 6:384–398CrossRefGoogle Scholar
  53. Ter-Mikaelian MT, Korzukhin MD (1997) Biomass equation for sixty-five North American tree species. For Ecol Manag 97:1–24CrossRefGoogle Scholar
  54. Tritton LM, Hornbeck JW (1982) Biomass equations for major tree species of the Northeast. USDA Forest Service, Northeastern Forest Experiment Station GTR NE-69Google Scholar
  55. West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667CrossRefGoogle Scholar
  56. Williams MS, Schreuder HT (2000) Guidelines for choosing volume equations in the presence of measurement error in height. Can J For Res 30:306–310CrossRefGoogle Scholar
  57. Wirth C, Schumacher J, Schulze E-D (2004) Generic biomass functions for Norway spruce in Central Europe—a meta-analysis approach toward prediction and uncertainty estimates. Tree Physiol 24:121–139PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • J. Chave
    • 1
    Email author
  • C. Andalo
    • 1
  • S. Brown
    • 2
  • M. A. Cairns
    • 3
  • J. Q. Chambers
    • 4
  • D. Eamus
    • 5
  • H. Fölster
    • 6
  • F. Fromard
    • 7
  • N. Higuchi
    • 8
  • T. Kira
    • 9
  • J.-P. Lescure
    • 10
  • B. W. Nelson
    • 8
  • H. Ogawa
    • 11
  • H. Puig
    • 7
  • B. Riéra
    • 12
  • T. Yamakura
    • 11
  1. 1.Laboratoire Evolution et Diversité Biologique UMR 5174, CNRS/UPS, bâtiment IVR3Université Paul SabatierToulouseFrance
  2. 2.Ecosystem Services UnitWinrock InternationalArlingtonUSA
  3. 3.National Health and Environmental Effects Research Laboratory, Western Ecology DivisionUS Environmental Protection AgencyCorvallisUSA
  4. 4.Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansUSA
  5. 5.Institute for Water and Environmental Resource ManagementUniversity of TechnologySydneyAustralia
  6. 6.Institut für Bodenkunde und WaldernährungUniversität GöttingenGottingen Germany
  7. 7.Laboratoire Dynamique de la Biodiversité, CNRS/UPSToulouseFrance
  8. 8.Instituto Nacional de Pequisas da Amazônia Brazil
  9. 9.ILEC Foundation, Oroshimo-choKusatsu City, Shiga Japan
  10. 10.IRDOrleansFrance
  11. 11.Plant Ecology Laboratory, Graduate School of ScienceOsaka City UniversitySumiyoshikuJapan
  12. 12.Laboratoire d’Ecologie GénéraleURA 1183 CNRS/MNHNBrunoyFrance

Personalised recommendations