Advertisement

Oecologia

, Volume 143, Issue 4, pp 483–500 | Cite as

Amazonia and the modern carbon cycle: lessons learned

  • Jean Pierre H. B. Ometto
  • Antonio D. Nobre
  • Humberto R. Rocha
  • Paulo Artaxo
  • Luiz A. Martinelli
Concepts, Reviews and Syntheses

Abstract

In this paper, we review some critical issues regarding carbon cycling in Amazonia, as revealed by several studies conducted in the Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA). We evaluate both the contribution of this magnificent biome for the global net primary productivity/net ecosystem exchange (NPP/NEE) and the feedbacks of climate change on the dynamics of Amazonia. In order to place Amazonia in a global perspective and make the carbon flux obtained through the LBA project comparable with global carbon budgets, we extrapolated NPP/NEE values found by LBA studies to the entire area of the Brazilian Amazon covered by rainforest. The carbon emissions due to land use changes for the tropical regions of the world produced values from 0.96 to 2.4 Pg C year−1, while atmospheric CO2 inversion models have recently indicated that tropical lands in the Americas could be exchanging a net 0.62±1.15 Pg C year−1 with the atmosphere. The difference calculated from these two methods would imply a local sink of approximately 1.6–1.7 Pg C year−1, or a source of 0.85 ton C ha−1 year−1. Using our crude extrapolation of LBA values for the Amazon forests (5 million km2) we estimate a range for the C flux in the region of −3.0 to 0.75 Pg C year−1. The exercise here does not account for environmental variability across the region, but it is an important driver for present and future studies linking local process (i.e. nutrient availability, photosynthetic capacity, and so forth) to global and regional dynamic approaches.

Keywords

Amazonia Carbon cycle Deforestation Climate changes 

Notes

Acknowledgements

Jean Pierre H.B.Ometto, Luiz Martinelli and Humberto Rocha acknowledge FAPESP and NASA, through LBA, for financial support. Antonio D. Nobre acknowledges support from PPG7-FINEP, European Commission and CNPq. Paulo Artaxo acknowledges the Millennium Institute from CNPq and FAPESP for financial support. The authors acknowledge Adam West, Suzan Trumbore and an anonymous reviewer for great and critical contribution that improved the accuracy and clarity of this paper.

References

  1. Achard F, Eva HD, Stibig HJ, Mayaux P, Gallego J, Richards T, Malingreau JP (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002PubMedCrossRefGoogle Scholar
  2. Andersen LE, Granger CWJ, Reis EJ, Weinhold D, Wunder S (2002) The dynamic of deforestation and economic growth in Brazilian Amazonia. Cambridge University Press, UKGoogle Scholar
  3. Andreae MO, Artaxo P, Fischer H, Freitas SR, Gregoire JM, Hansel A, Hoor P, Kormann R, Krejci R, Lange L, Lelieveld J, Lindinger W, Longo K, Peters W, de Reus M, Scheeren B, Dias MAFS, Strom J, van Velthoven PFJ, Williams J (2001) Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region. Geophys Res Lett 28(6):951–954CrossRefGoogle Scholar
  4. Andreae MO, Almeida SS, Artaxo P, Brandão C, Carswell FE, Ciccioli P, Culf A, Esteves JL, Gash J, Grace J, Kabat P, Lelieveld J, Malhi Y, Manzi AO, Meixner FX, Nobre AD, Nobre C, Lourdes Ruivo MA, Silva-Dias MA, Stefani P, Valentini R, von Jouanne J, Waterloo M (2002) Biogeochemical cycling of carbon, water, energy, trace gases and aerosols in Amazonia: the LBA-EUSTACH experiments. J Geophys Res 107(D20):8066–8091. DOI 10.1029/2001JD000524Google Scholar
  5. Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Silva-Dias MAF (2004) Smoking rain clouds over the Amazon. Science 303(5662):1337–1342PubMedCrossRefGoogle Scholar
  6. Araujo AC, Nobre AD, Kruijt B, Culf AD, Stefani P, Elbers J, Dallarosa R, Randow C, Manzi AO, Valentini R, Gash JHC, Kabat P (2002) Dual tower longterm study of carbon dioxide fluxes for a central Amazonian rain forest: the Manaus LBA site. J Geophys Res Atmos 107(D20):8090. DOI 10.1029/2001JD000676Google Scholar
  7. Artaxo P, Martins JV, Yamasoe MA, Procopio AS, Pauliquevis TM, Andreae MO, Guyon P, Gatti LV, Leal AMC (2002) Physical and chemical properties of aerosols in the wet and dry seasons in Rondonia, Amazonia. J Geophys Res Atmos 107(D20):8081Google Scholar
  8. Avissar R, Silva Dias PL, Silva Dias MAF, Nobre C (2002) The large-scale biosphere-atmosphere experiment in amazonia (LBA): insights and future research needs. J Geophys Res Special LBA Issue 107. DOI 10.1029/2002JD002704Google Scholar
  9. Baidya Roy S, Avissar R (2002) Impact of land use/land cover change on regional hydrometeorology in Amazonia. J Geophys Res 107(D20). DOI 10.1029/2000JD000266Google Scholar
  10. Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Killen T, Laurance SG, Laurance WL, Lewis SL, Lloyd J, Monteagudo A, Neill DA, Patino S, Pitman NCA, Silva N, Vasquez MR (2004a) Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biol 10(5):545–562CrossRefGoogle Scholar
  11. Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Vargas PN, Pitman NCA, Silva JNM, Martınez RV (2004b) Increasing biomass in Amazonian forest plots. Phil Trans R Soc Lond B. DOI 10.1098/rstb.2003.1422Google Scholar
  12. Baldocchi DD, Vogel CA, Hall B (1997) Seasonal variation of energy and water vapor exchange rates above and below a boreal jack pine forest canopy. J Geophys Res Atmos 102(D24):28939–28951CrossRefGoogle Scholar
  13. Baldocchi D, Finnigan J, Wilson K, Paw KT (2000) On measuring net ecosystem carbon exchange over tall vegetation in complex terrain. Bound Layer Meteorol 96:257–291CrossRefGoogle Scholar
  14. Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, U KTP, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434CrossRefGoogle Scholar
  15. Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol 9(4):479–492CrossRefGoogle Scholar
  16. Bernoux M, Carvalho MDS, Volkoff B, Cerri CC (2002) Brazil’s soil carbon stocks. Soil Sci Soc Am J 66(3):888–896CrossRefGoogle Scholar
  17. Bousquet P, Peylin P, Ciais P, Le Quere C, Friedlingstein P, Tans PP (2000) Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290:1342–1346PubMedCrossRefGoogle Scholar
  18. Browder J, Godfrey B (eds) (1997) Rainforest Cities—Urbanization, Development, and Globalization of the Brazilian Amazon. Columbia University Press, New YorkGoogle Scholar
  19. Brown IF, Martinelli LA, Thomas WW, Moreira MZ, Ferreira CAC, Victoria RL (1995) Uncertainty in the biomass of Amazonian forests—an example from Rondonia, Brazil. For Ecol Manag 75(1–3):175–189CrossRefGoogle Scholar
  20. Camargo PB, Trumbore SE, Martinelli LA, Davidson EA, Nepstad DC, Victoria RL (1999) Soil carbon dynamics in regrowing forest of eastern Amazonia. Global Change Biol 5:693–702CrossRefGoogle Scholar
  21. Carswell FE, Costa AL, Palheta M, Malhi Y, Meir PW, Costa J de PR, Ruivo M de L, Leal LSM, Costa JMN, Clement RJ, Grace J (2002) Seasonality in CO2 and H2O flux at an Eastern Amazonian rain forest. J Geophys Res Atmos 107(D20):8076. DOI 10.1029/2000JD000284Google Scholar
  22. Carvalho G, Barros AC, Moutinho P, Nepstad D. (2001) Sensitive development could protect Amazonia instead of destroying it. Nature 409:13CrossRefGoogle Scholar
  23. Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397(6719):491–497CrossRefGoogle Scholar
  24. Chambers JQ, Higuchi N, Schimel JP (1998) Ancient trees in Amazonia. Nature 391(6663):135–136CrossRefGoogle Scholar
  25. Chambers JQ, Higuchi N, Schimel JP, Ferreira LV, Melack JM (2000) Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122:380–388CrossRefGoogle Scholar
  26. Chambers JQ, Santos J, Ribeiro RJ, Higuchi N (2001a) Tree damage, allometric relationships, and above-ground net primary production in a tropical forest. For Ecol Manag 152:73–84CrossRefGoogle Scholar
  27. Chambers JQ, Higuchi N, Tribuzy ES, Trumbore SE (2001b) Sink for a century: carbon sequestration in the Amazon. Nature 410(6827):429–429PubMedCrossRefGoogle Scholar
  28. Chambers JQ, Silver WL (2004) Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change. Philos T Roy Soc B 359(1443):463–476CrossRefGoogle Scholar
  29. Chambers JQ, Tribuzy ES, Toledo LC, Crispim BF, Higuchi N, Santos J, Araújo AC, Kruijt B, Nobre AD, Trumbore SE (2004) Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecol Appl Suppl 14(4):S72–S88CrossRefGoogle Scholar
  30. Chambers JQ, Higuchi N, Teixiera LM, Santos J, Laurance SG, Trumbore SE (2004) Response of tree biomass and wood litter to disturbance in a central Amazon Forest. Oecologia 141:596–614PubMedCrossRefGoogle Scholar
  31. Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004) Error propagation and scaling for tropical forest biomass estimates. Philos T Roy Soc B 359(1443):409–420CrossRefGoogle Scholar
  32. Chomovitz KM, Thomas TS (2001) Geographical patterns of land use and land intensity in the Brazilian Amazon. Policy Research Working Paper 2687, The World BankGoogle Scholar
  33. Ciais P, Tans PP, White JWC, Trolier M, Francey RJ, Berry JA, Randall DR, Sellers PJ, Collatz JG, Schimel DS (1995) Partitioning of ocean and land uptake of CO2 as inferred by δ13C measurements from the NOAA climate monitoring and diagnostics laboratory global air sampling network. J Geophys Res 100:5051–5070CrossRefGoogle Scholar
  34. Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P, Maenhaut W (2004) Formation of secondary organic aerosols through photo-oxidation of isoprene. Science 303:1173–1176PubMedCrossRefGoogle Scholar
  35. Clark DA (2004) Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. Phil Trans R Soc Lond B. DOI 10.1098/rstb.2003.1426Google Scholar
  36. Clark DA (2002) Are tropical forests an important carbon sink? Reanalysis of the long-term plot data. Ecol Appl 12:3–7CrossRefGoogle Scholar
  37. Cochrane MA, Laurance WF (2002) Fire as a large-scale edge effect in Amazonian forests. J Tropical Ecol 18:1–15CrossRefGoogle Scholar
  38. Cochrane MA, Alencar A, Schulze MD, Souza CM Jr, Nepstad DC, Lefebvre PA, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284:1832–1835PubMedCrossRefGoogle Scholar
  39. Condit R, Hubbell SP, Foster Rb (1995) Mortality-rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol Monogr 65(4):419–439CrossRefGoogle Scholar
  40. Conway TJ, Tans PP, Waterman LS, Thoning KW, Kitzis DR, Masarie KA, Zhang N (1994) Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory global air sampling network. J Geophys Res 99:22831–22855CrossRefGoogle Scholar
  41. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187PubMedCrossRefGoogle Scholar
  42. Crutzen PJ, Fall R, Galbally I, Lindinger W (1999) Parameters for global ecosystem models. Nature 399:535–536CrossRefGoogle Scholar
  43. Culf AD, Esteves JL, Marques Filho AO, Rocha HR (1996) Radiation, temperature and humidity over forest and pasture in Amazonia. In: Gash JHC, Nobre CA, Roberts JM, Victoria RL (eds) Amazonian climate and deforestation. Wiley, New York, pp 175–192Google Scholar
  44. Davidson EA, Verchot LV, Cattânio JH, Ackerman IL, Carvalho JEM (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69CrossRefGoogle Scholar
  45. DeFries RS, Houghton RA, Hansen MC, Field CB, Skole D, Townsend J (2002) Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. PNAS 99:14256–14261PubMedCrossRefGoogle Scholar
  46. Dezzeo N, Worbes M, Ishii I, Herrera R (2003) Annual tree rings revealed by radiocarbon dating in seasonally flooded forest of Mapire river (Orinoco river, Venezuela). Plant Ecol 168:165–175CrossRefGoogle Scholar
  47. Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190PubMedCrossRefGoogle Scholar
  48. Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P (1998) A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282:442–446PubMedCrossRefGoogle Scholar
  49. Fearnside PM (1996) Amazonian deforestation and global warming: carbon stocks in vegetation replacing Brazil’s Amazon forest. For Ecol Manag 80:21–34CrossRefGoogle Scholar
  50. Fearnside PM (1997) Greenhouse gases from deforestation in Brazilian Amazonia: net committed emissions. Climatic Change 35:321–360CrossRefGoogle Scholar
  51. Fearnside PM (2000) Global warming and tropical land use change: greenhouse gas emissions from biomass burning, decomposition, and soils in forest conversion, shifting cultivation, and secondary vegetation. Climatic Change 46:115–158CrossRefGoogle Scholar
  52. Field CB, Behrenfeld MJ, Randerson J, Falkowski (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240PubMedCrossRefGoogle Scholar
  53. Friedlingstein P, Fung I, Holland E, John J, Brasseur G, Erickson D, Schimel D (1995) On the contribution of CO2 fertilization to the missing biospheric sink. Global Biogeochem Cy 9(4):541–556CrossRefGoogle Scholar
  54. Gash JHC, Huntingford C, Marengo JA, Betts RA, Cox PM, Fisch G, Fu R, Gandu AW, Harris PP, Machado LAT, von Randow C, Silva Dias MA (2004) Amazonian climate: results and future research. Theor Appl Climatol (LBA Special Issue) 78:187–193Google Scholar
  55. Gerwing JJ, Farias DL (2000) Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest. J Trop Ecol 16:327–335CrossRefGoogle Scholar
  56. Goulden ML, Miller SD, Rocha HR, Menton MC, Freitas HC, Figueira AMS, Sousa CAD (2004) Diel and seasonal patterns of tropical forest CO2 Exchange. Ecol Appl Suppl 14(4):S42–S54CrossRefGoogle Scholar
  57. Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biol 2:168–182CrossRefGoogle Scholar
  58. Grace J, Lloyd J, McIntyre J, Miranda AC, Meir P, Miranda HS, Nobre C, Moncrieff J, Massheder J, Malhi Y, Wright I, Gash J (1995a) Carbon dioxide uptake by an undisturbed tropical rain forest in Southwest Amazonia, 1992–1993. Science 270:778–780CrossRefGoogle Scholar
  59. Grace J, Lloyd J, McIntyre J, Miranda AC, Meir P, Miranda HS, Moncrieff J, Massheder J, Wright I, Gash J (1995b) Fluxes of carbon dioxide and water vapor over an undisturbed tropical forest in south-west Amazonia. Global Change Biol 1:1–12CrossRefGoogle Scholar
  60. Grace J, Malhi Y, Lloyd J, McIntyre J, Miranda AC, Meir P, Miranda HS (1996) The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest. Global Change Biol 2:208–217CrossRefGoogle Scholar
  61. Greenberg JP, Guenther AB, Petron G, Wiedinmyer C, Vega O, Gatti L, Tota J, Fisch G (2004) Biogenic VOC emissions from forested and cleared Amazonian landscapes. Global Change Biol 10(5):651–662CrossRefGoogle Scholar
  62. Guenther A, Nicholas HC, Erickson D, Fall R, Geron C, Harley T, Graedel P, Klinger L, Pierce T, Taylor J (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892CrossRefGoogle Scholar
  63. Guenther A (2002) The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems. Chemosphere 49:837–844PubMedCrossRefGoogle Scholar
  64. Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Fan S, Fung IY, Gloor M, Heimann M, Higuchi K, John J, Maki T, Maksyutov S, Masarie K, Peylin P, Prather M, Pak BC, Randerson J, Sarmiento J, Taguchi S, Takahashi T, Yuen CW (2002) Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415(6872):626–630PubMedCrossRefGoogle Scholar
  65. Harley P, Vasconcelos P, Vierling L, Pinheiro CS, Greenberg J, Guenther A, Klinger L, Almeida S, Neill D, Baker T, Phillips O, Malhi Y (2004) Variation in potential for isoprene emissions among Neotropical forest sites. Global Change Biol 10(5):630–650CrossRefGoogle Scholar
  66. Hecht Sb (1993) The logic of livestock and deforestation in Amazonia. Bioscience 43(10):687–695CrossRefGoogle Scholar
  67. Hirsch AI, Little WS, Houghton RA, Scott NA, White JD (2004) The net carbon flux due to deforestation and forest re-growth in the Brazilian Amazon: analysis using a process-based model. Global Change Biol 10(5):908–924. DOI 10.1111/j.1529–8817.2003.00765.xGoogle Scholar
  68. Hodnett MG, da Silva LP, Rocha HR, Cruz Senna RC (1995) Seasonal soil water storage changes beneath central Amazonian rainforest and pasture. J Hydrol 170:233–254CrossRefGoogle Scholar
  69. Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus 55B:378–390Google Scholar
  70. Houghton RA, Lawrence KT, Hackler JL, Brown S (2001) The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Global Change Biol 7:731–746CrossRefGoogle Scholar
  71. Houghton RA, Skole DL, Nobre CA, Hackler JL, Lawrence KT, Chomentowski WH (2000) Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature 403:301–304PubMedCrossRefGoogle Scholar
  72. Houghton RA, Davidson EA, Woodwell GM (1998) Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance. Global Biogeochem Cycles 12(1):25–34CrossRefGoogle Scholar
  73. House JI, Prentice IC, Ramankutty N, Houghton RA, Heimann M (2003) Reconciling apparent inconistencies in estimates of terrestrial CO2 sources and sinks. Tellus 55B:345–363Google Scholar
  74. INPE (Instituto Nacional de Pesquisas Espaciais) (2004) Desflorestamento 1998–2004. (http://www.inpe.gov.br) INPE, São José dos Campos, SãoPaulo, Brazil
  75. Ito A, Oikawa T (2000) A model analysis of the relationship between climate perturbations and carbon budget anomalies in global terrestrial ecosystems: 1970 to 1997. Climate Res 15:161–183CrossRefGoogle Scholar
  76. Jarvis PG, Massheder JM, Hale SE, Moncrieff JB, Rayment M, Scott SL (1997) Seasonal variation of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest. J Geophys Res Atmos 102(D24):28953–28966CrossRefGoogle Scholar
  77. Johnson CM, Vieira ICG, Zarin DJ, Frizano J, Johnson AH (2001) Carbon and nutrient storage in primary and secondary forests in eastern Amazonia. For Ecol Manag 147:245–252CrossRefGoogle Scholar
  78. Junk WJ (1997) The central Amazon floodplain: ecology of pulsing system. Springer, Berlin Heidelberg, p 525Google Scholar
  79. Keller M, Clark DA, Clark DB, Weitz AM, Veldkamp E (1996) If a tree falls in the forest. Science 273(5272):201CrossRefGoogle Scholar
  80. Keller M, Palace M, Hurtt G (2001) Biomass estimation in the Tapajós National Forest, Brazil. Examination of sampling and allometric uncertainties. For Ecol Manag 154:371–382CrossRefGoogle Scholar
  81. Kesselmeier J, Kuhn U, Wolf A, Andreae MO, Ciccioli P, Brancaleoni E, Frattoni M, Guenther A, Greenberg J, Vasconcellos PD, De Oliva ST, Tavares T, Artaxo P (2000) Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia. Atmos Environ 34:4063–4072CrossRefGoogle Scholar
  82. Kesselmeier J, Ciccioli P, Kuhn U, Stefani P, Biesenthal T, Rottenberger S, Wolf A, Vitullo M, Valentini R, Nobre A, Kabat P, Andreae MO (2002a) Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Global Biogeochem Cycles 16:1126. DOI 10.1029/2001GB001813Google Scholar
  83. Kesselmeier J, Kuhn U, Rottenberger S, Biesenthal T, Wolf A, Schebeske G, Andreae MO, Ciccioli P, Brancaleoni E, Frattoni M, Oliva ST, Botelho ML, Silva CMA, Tavares TM (2002b) Concentrations and species composition of atmospheric volatile organic compounds (VOCs) as observed during the wet and dry season in Rondonia (Amazonia) J Geoph Res Atmos 107(D20):8053Google Scholar
  84. Körner C (2004) CO2 enrichment may cause tropical forests to become carbon sources. Phil Trans R Soc Lond B. DOI 10.1098/rstb.2003.1429Google Scholar
  85. Kruijt B, Elbers JA, von Randow C, Araujo AC, Oliveira PJ, Culf A, Manzi AO, Nobre AD, Kabat P, Moors EJ (2004) The robustness in eddy correlation fluxes for Amazon rainforest conditions. Ecol Appl 14:S101–S113CrossRefGoogle Scholar
  86. Kuhn U, Rottenberger S, Biesenthal T, Wolf A, Schebeske G, Ciccioli P, Branscaleoni E, Frattoni M, Tavares TM, Kesselmeier J (2004) Seasonal differences in isoprene and light-dependent monoterpene emission by tropical tree species. Global Change Biol 10(5):663–682CrossRefGoogle Scholar
  87. Kuhn U, Rottenberger S, Biesenthal T, Wolf A, Schebeske G, Ciccioli P, Brancaleoni E, Frattoni M, Tavares T, Kesselmeier J (2002) Isoprene and monoterpene emission of Amazonian tree species during the wet season: Direct and indirect investigations of controlling functions. J Geophys Res Atmos 107. DOI 10.1029/2001JD000978Google Scholar
  88. Laurance WF (2004) Forest–climate interactions in fragmented tropical landscapes. Phil Trans R Soc Lond B. DOI 10.1098/rstb.2003.1430Google Scholar
  89. Laurance WF, Cochrane MA, Bergen S, Fearnside PM, Delamonica P, Barber C, D’Angelo S, Fernandes T (2001) The future of the Brazilian Amazon. Science 291(5503):438–439PubMedCrossRefGoogle Scholar
  90. Laurance WF et al (1997) Biomass collapse in Amazonian forest. Science 278:1117–1118CrossRefGoogle Scholar
  91. Lloyd J, Bird MI, Veenendaal EM, Kruijt B (2001) Should phosphorus availability be constraining moist tropic al forest responses to increasing CO2 concentrations? In: Schulze ED (ed) Global biogeochemical cycles in the climate system. Academic, San Diego, pp 95–114Google Scholar
  92. Malhi Y, Baker T, Phillips OL, Almeida S, Alvarez E, Arroyo L, Chave J, Czimezik CI, DiFiore A, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Montoya LMM, Monteagudo A, Neill DA, Vargas PN, Patina S, Pitman NCA, Quesada CA, Silva JNM, Lezama AT, Martinez RV, Terborgh J, Vinceti B, Lloyd J (2004) The above-ground wood productivity and net primary productivity of 100 neotropical forest plots. Global Change Biol 10(5):563–591CrossRefGoogle Scholar
  93. Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740CrossRefGoogle Scholar
  94. Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol 15:332–337PubMedCrossRefGoogle Scholar
  95. Malhi Y, Nobre AD, Grace J, Kruijt B, Pereira MGP, Culf A, Scott S (1998) Carbon dioxide transfer over a central Amazonian rain forest. J Geophys Res Atmos 103:31593–31612CrossRefGoogle Scholar
  96. Malhi Y, Wright J (2004) Spatial patterns and recent trends in the climate of tropical rainforest regions. Phil Trans R Soc Lond B. DOI 10.1098/rstb.2003.1433Google Scholar
  97. Manzi AO et al (2002) NEE over a floodable ecosystem in Pantanal, Brazil, II LBA Scientific Conference, ManausGoogle Scholar
  98. Marengo JA, Nobre CA (2001) General characteristics and variability of climate in the Amazon basin and its links to the global climate system. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, New YorkGoogle Scholar
  99. Margulis S (2003) Causes of Deforestation of the Brazilian Amazon. World Bank working paper no. 22Google Scholar
  100. McGuire AD, Melillo JM, Kicklighter DW, Pan YD, Xiao XM, Helfrich J, Moore B, Vorosmarty CJ, Schloss AL (1997) Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: sensitivity to changes in vegetation nitrogen concentration. Global Biogeochem Cycles 11(2):173–189CrossRefGoogle Scholar
  101. Melillo JM, Houghton RA, Kicklighter DW, McGuire AD (1996) Tropical deforestation and the global carbon budget. Annu Rev Energy Environ 21:293–310CrossRefGoogle Scholar
  102. Melillo JM, McGuire AD, Kicklighter DW, Moore B III, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240CrossRefGoogle Scholar
  103. Miller SD, Goulden ML, Menton MC, Rocha HR, Freitas HC, Figueira AMS, Sousa CAD (2004) Biometric and micrometeorological measurements of tropical forest carbon balance. Ecol Appl Suppl 14(4):S114–S126CrossRefGoogle Scholar
  104. Miranda AC, Miranda HS, Lloyd J, Grace J, McIntyre JA, Meir P, Riggan P, Lockwood R, Brass J (1996) Carbon dioxide fluxes over a cerrado sensu stricto in central Brazil. In: Gash JHC, Nobre CA, Roberts JM, Victoria RL (eds) Amazonian climate and deforestation. Wiley, New York, pp 353–364Google Scholar
  105. Miranda EV (2002) Padrão de desenvolvimento radial horario de tres especies arboreas da Amazonia utilizando dendrometros automaticos. MSc Dissertation, INPA, ManausGoogle Scholar
  106. Martens CS, Shay TJ, Mendlovitz HP, Matross DM, Saleska SR, Wofsy SC, Woodward WS, Menton MC, De Moura JMS, Crill PM, De Moraes OLL, Lima RL (2004) Radon fluxes in tropical forest ecosystems of Brazilian Amazonia: night-time CO2 net ecosystem exchange derived from radon and eddy covariance methods. Global Change Biol 10(5):618. DOI 10.1111/j.1365–2486.2004.00764.xGoogle Scholar
  107. Nelson BW, Mesquita R, Pereira JLG, de Souza SGA, Batista GT, Couto LB (1999) Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. For Ecol Manag 117:149–167CrossRefGoogle Scholar
  108. Nepstad D, McGrath D, Alencar A, Barros AC, Carvalho G, Santilli M, Diaz M del CV (2002) Frontier governance in Amazonia. Science 295:629–631PubMedCrossRefGoogle Scholar
  109. Nepstad DC, Carvalho GO, Barros AC, Alencar A, Capobianco JP, Bishop J, Moutinho P, Lefebvre PA, Silva UL, Prins E (2001) Road paving, fire regime feedbacks, and the future of Amazon forests. For Ecol Manag 154:395–407CrossRefGoogle Scholar
  110. Oliveira AA, Nelson BW (2001) Floristic relationship of terra firme forests in the Brazilian Amazon. For Ecol Manag 146:169–197CrossRefGoogle Scholar
  111. Phillips OL, Gentry AH (1994) Increasing turnover through time in tropical forests. Science 263:954–958PubMedCrossRefGoogle Scholar
  112. Phillips OL, Malhi Y, Higuchi N, Laurance WF, Núñez PV, Vásquez RM, Laurance SG, Ferreira LV, Stern M, Brown S, Grace J (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442PubMedCrossRefGoogle Scholar
  113. Phillips OL, Malhi Y, Vinceti B, Baker T, Lewis SL, Higuchi N, Laurance WF, Vargas PN, Martinez RV, Laurance S, Ferreira LV, Stern M, Brown S, Grace J (2002a) Changes in growth of tropical forests: evaluating potential biases. Ecol Appl 12:576–587CrossRefGoogle Scholar
  114. Phillips OL, Martinez RV, Arroyo L, Baker TR, Killeen T, Lewis SL, Malhi Y, Mendoza AM, Neill D, Vargas PN, Alexiades M, Ceron C, Di Fiore A, Erwin T, Jardim A, Paiacios W, Saidias M, Vinceti B (2002b) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774PubMedCrossRefGoogle Scholar
  115. Phillips O, Baker T, Arroyo L, Higuchi N, Killeen T, Laurance WF, Lewis1 SL, Lloyd J, Malhi Y, Monteagudo A, Neill D, Nunez Vargas P, Silva N, Terborgh J, Vasquez Martınez R, Alexiades M, Almeida S, Brown S, Chave J, Comiskey JA, Czimczik CI, Di Fiore A, Erwin T, Kuebler C, Laurance SG, Nascimento HEM, Olivier J, Palacios W, Patino S, Pitman N, Quesada CA, Saldias M, Torres Lezama A, Vinceti B (2004) Pattern and process in Amazon tree turnover, 1976–2001. Phil Trans R Soc Lond B. DOI 10.1098/rstb.2003.1438Google Scholar
  116. Piedade MTF, Junk WJ, Parolin P (2000) The flood and photosynthetic response of trees in a White water floodplain (várzea) of the Central Amazon, Brazil. Verh Int Verein Limmol 27:1734–1739Google Scholar
  117. Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Quere C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT (ed) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 183–237Google Scholar
  118. Procópio AS, Artaxo P, Kaufman YJ, Remer LA, Schafer J S, Holben BN (2004) Multiyear analysis of Amazonian biomass burning smoke radiative forcing of climate. Geophys Res Lett 31:L03108. DOI 10.1029/2003GL018646Google Scholar
  119. Rice AH, Pyle EH, Saleska SR, Hutyra L, Carmargo PB, Portilho K, Marques DF, Wofsy SF (2004) Carbon balance and vegetation dynamics in an old growth Amazonian forest. Ecol Appl 14(4):555–571CrossRefGoogle Scholar
  120. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620PubMedCrossRefGoogle Scholar
  121. Rocha HR, Freitas H, Rosolem R, Juarez R, Tannus RN, Ligo MV, Cabral OMR, Silva Dias MAF (2002) Measurements of CO2 exchange over a woodland savanna (Cerrado Sensu stricto) in southeast Brasil. Biota Neotropica 2(1):Google Scholar
  122. Rocha HR, Goulden ML, Miller SD, Menton MC, Pinto LDVO, Freitas HC, Figueira AMS (2004) Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol Appl Suppl 14(4):S22–S32CrossRefGoogle Scholar
  123. Sakai R, Fitzjarrald D, Moraes O, Staebler R, Acevedo O, Czikowsky M, da Silva R, Brait E, Miranda V (2004) Land-use effects on local energy, water and carbon balances in an Amazonian agricultural field. Global Change Biol 10(5):895–907CrossRefGoogle Scholar
  124. Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, da Roacha HR, de Camargo PB, Crill P, Daube BC, de Freitas HC, Hutyra L, Keller M, Kirchoff V, Menton M, Munger JW, Pyle EH, Rice AH, Silva H (2003) Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557PubMedCrossRefGoogle Scholar
  125. Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore III B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172PubMedCrossRefGoogle Scholar
  126. Schimel DS (1995) Terrestrial ecosystems and the carbon-cycle. Global Change Biol 1:77–91CrossRefGoogle Scholar
  127. Schongart J, Junk W, Piedade MTF, Ayres M, AlloyShutterman A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño–Southern Oscillation effect. Global Change Biol 10:1–10CrossRefGoogle Scholar
  128. Schongart J, Piedade MTF, Ludwigshausen S, Horna V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597CrossRefGoogle Scholar
  129. Silva Dias MAF, Rutledge S, Kabat P, Silva Dias PL, Nobre C, Fisch G, Dolman AJ, Zipser E, Garstang M, Manzi A, Fuentes JD, Rocha H, Marengo J, Plana-Fattori A, Sá L, Alvalá R, Andreae M O, Artaxo P, Gielow R, Gatti L (2002) Clouds and rain processes in a biosphere atmosphere interaction context in the Amazon region. J Geophys Res. DOI 10.1029/2001JD000335Google Scholar
  130. Silva RP, Santos J, Tribuzy ES, Chambers JQ, Nakamura S, Higuchi N (2002) Diameter increment and growth patterns for individual trees in Central Amazon, Brazil. For Ecol Manag 116:295–301CrossRefGoogle Scholar
  131. Staebler RM, Fitzjarrald DR (2004) Observing subcanopy CO2 advection. Agric For Met 122(3–4):139–156CrossRefGoogle Scholar
  132. Tans PP, White JWC (1998) The global carbon cycle—In balance, with a little help from the plants. Science 281(5374):183–184CrossRefGoogle Scholar
  133. Tans PP, Fung IY, Takahashi T (1990) Observational constraints on the global atmospheric CO2 budget. Science 247:1431–1438PubMedCrossRefGoogle Scholar
  134. Telles ECC, de Camargo PB, Martinelli LA, Trumbore SE, da Costa ES, Santos J, Higuchi N, Oliveira RO Jr (2003) Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia. Global Biogeochemical Cycles 17:1040. DOI 10.1029/2002GB001953Google Scholar
  135. Thomaz WW (2000) Conservation and monographic research on the flora of tropical America. Biodivers Conserv 8:1007–1015CrossRefGoogle Scholar
  136. Thompson MV, Randerson JT, Malmstrom CM, Field CB (1996) Change in net primary production and heterotrophic respiration: how much is necessary to sustain the terrestrial carbon sink? Global Biogeochem Cy 10(4):711–726CrossRefGoogle Scholar
  137. Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich III J, Moore III B, Vorosmarty CJ (2000) Climatic and biotic controls on annual carbon storage in Amazonian ecosystems. Global Ecol Biogeogr 9:315–335CrossRefGoogle Scholar
  138. Tuomisto H, Ruokolainen K, Kalliola R, Linna A, Danjoy W, Rodriguez Z (1995) Dissecting Amazonian biodiversity. Science 269:63–66PubMedCrossRefGoogle Scholar
  139. Victoria RL, Martinelli LA, Moraes JM, Ballester MV, Krusche AV, Pellegrino G, Almeida RMB, Richey JE (1998) Surface air temperatures variations in the Amazon region and its borders during this century. J Climate 11:1105–1110CrossRefGoogle Scholar
  140. Vieira S, Camargo PB, Selhorst D, Silva R, Hutyra L, Chambers JQ, Brown IF, Higuchi N, Santos J, Wofsy S, Trumbore SE, Martinelli LA (2004) Forest structure and carbon dynamics in Amazonian tropical rain forest. Oecologia. DOI 10.1007/s00442–004–1598-zGoogle Scholar
  141. Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298CrossRefGoogle Scholar
  142. Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forests. An Rev Ecol Syst 17:137–168CrossRefGoogle Scholar
  143. von Randow C, Sá LDA, Prasad GSSD, Manzi A, Kruijt B (2001) Scale variability of surface fluxes of energy and carbon over a tropical rain forest in South-West Amazonia. I. Diurnal Conditions. J Geoph Res 107. DOI 10.1029/2001JD000379Google Scholar
  144. Vourlitis GL, Priante Filho N, Hayashi MMS, Nogueira JS, Raiter F, Hoegel W, Campelo Jr JH (2004) The role of seasonal variations in meteorology on the net CO2 exchange of a Brazilian transitional tropical forest. Ecol Appl Suppl 14(4):S89–S100CrossRefGoogle Scholar
  145. Vourlitis GL, Priante-Filho N, Hayashi MMS, Nogueira JS, Caseiro FT, Campelo JH (2001) Seasonal variations in the net ecosystem CO2 exchange of a mature Amazonian tropical transitional forest (cerradão). Funct Ecol 15:388–395CrossRefGoogle Scholar
  146. Walker R, Moran E, Anselin L (2000) Deforestation and cattle ranching in the Brazilian Amazon: external capital and household processes. World Dev 28(4):683–699CrossRefGoogle Scholar
  147. Williams E, Madden N, Rosenfeld D, Gerlach J, Atkinson L, Dunnemann N, Frostrom G, Gears N, Antonio M, Biazon B, Camargo R, Franoa H, Gomes A, Lima M, Machado R, Manhaes S, Nachtigall L, Piva H, Quintiliano W, Machado L, Artaxo P, Roberts G, Renno N, Blakeslee R, Bailey J, Boccippio D, Betts A, Wolff D, Roy B, Halverson J, Rickenbach T, Fuentes J, Avelino E (2002) Contrasting convective regimes over the Amazon: implications for cloud electrification. J Geophys Res 107(D20):50.1–50.19Google Scholar
  148. White A, Cannell MGR, Friend AD (2000) CO2 stabilization, climate change and the terrestrial carbon sink. Global Change Biol 6:817–833CrossRefGoogle Scholar
  149. Wiedinmyer C, Guenther A, Harley P, Hewitt N, Geron C, Artaxo P, Steinbrecher R, Rasmussen R (2004) Global organic emissions from vegetation. In: Granier C, Artaxo P, Reeves C (eds) Emissions of trace gases and aerosols into the atmosphere. Kluwer, DordrechtGoogle Scholar
  150. Worbes M (2002) One hundred years of tree ring research in the tropics. A brief history and an outlook to future challenges. Dendrochronologia 20(1–2):217–231CrossRefGoogle Scholar
  151. Wright IR, Gash JHC, da Rocha HR, Shuttleworth WJ, Nobre CA, Maitelli GT, Zamparoni CAGP, Carvalho PRA (1992) Dry season micrometeorology of central Amazonian ranchland. Q J Roy Meterol Soc 118:1083–1099CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Jean Pierre H. B. Ometto
    • 1
  • Antonio D. Nobre
    • 2
  • Humberto R. Rocha
    • 3
  • Paulo Artaxo
    • 4
  • Luiz A. Martinelli
    • 1
  1. 1.Laboratório de Ecologia Isotópica—CENA/USPPiracicaba, SPBrazil
  2. 2.INPA escritório de representação no INPEInstituto Nacional de Pesquisas da AmazoniaSPBrazil
  3. 3.Departamento de Ciências Atmosféricas, Instituto Astronômico, Geofísico e de Ciências AtmosféricasUniversidade de São PauloSão Paulo, SPBrazil
  4. 4.Instituto de FísicaUniversidade de São PauloSão Paulo, SPBrazil

Personalised recommendations