Oecologia

, Volume 142, Issue 4, pp 541–545 | Cite as

Malarial parasites decrease reproductive success: an experimental study in a passerine bird

  • Alfonso Marzal
  • Florentino de Lope
  • Carlos Navarro
  • Anders Pape Møller
Population Ecology

Abstract

Malarial parasites are supposed to have strong negative fitness consequences for their hosts, but relatively little evidence supports this claim due to the difficulty of experimentally testing this. We experimentally reduced levels of infection with the blood parasite Haemoproteus prognei in its host the house martin Delichon urbica, by randomly treating adults with primaquine or a control treatment. Treated birds had significantly fewer parasites than controls. The primaquine treatment increased clutch size by 18%; hatching was 39% higher and fledging 42% higher. There were no effects of treatment on quality of offspring, measured in terms of tarsus length, body mass, haematocrit or T-cell-mediated immune response. These findings demonstrate that malarial parasites can have dramatic effects on clutch size and other demographic variables, potentially influencing the evolution of clutch size, but also the population dynamics of heavily infected populations of birds.

Keywords

Blood parasites Delichon urbica Haematozoa Primaquine Reproductive success 

References

  1. Abbas AK, Lichtman AH, Pober JS (1994) Cellular and molecular immunology. Saunder, Philadelphia, Pa.Google Scholar
  2. Allander K (1997) Reproductive investment and parasite susceptibility in the great tit. Funct Ecol 11:358–364CrossRefGoogle Scholar
  3. Allander K, Sundberg J (1997) Temporal variation and reliability of blood parasite levels in captive yellowhammer males Emberiza citrinella. J Avian Biol 28:325–330Google Scholar
  4. Applegate JE, Beaudoin RL (1970) Mechanism of spring relapse in avian malaria: effect of gonadotropin and corticosterone. J Wildl Dis 6:443–447Google Scholar
  5. Atkinson C, Van Riper C III (1991) Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon and Haemoproteus. In: Loye JE, Zuk M (eds) Bird–parasite interactions. Oxford University Press, Oxford, pp 19–48Google Scholar
  6. Bennett GF, Caines JR, Bishop MA (1988) Influence of blood parasites on the body mass of Passeriform birds. J Wildl Dis 24:339–343PubMedGoogle Scholar
  7. Bennett GF, Peirce MA, Ashford RW (1993) Avian haematozoa: mortality and pathogenicity. J Nat Hist Lond 26:993–1001Google Scholar
  8. Birkhead TR, Fletcher F, Pellatt EJ (1999) Nestling diet, secondary sexual traits and fitness in the zebra finch. Proc R Soc Lond Ser B 266:385–390CrossRefGoogle Scholar
  9. Blount JD, Houston DC, Surai PF, Møller AP (2004) Egg-laying capacity is limited by carotenoid pigment availability in wild gulls Larus fuscus. Proc R Soc Lond Ser B 271[Suppl]:S79–S81Google Scholar
  10. Chen M, Shi L, Sullivan D Jr (2001) Haemoproteus and Schitosoma synthesize heme polymers similar to Plasmodium hemozoin and β-hematin. Mol Biochem Parasitol 113:1–8CrossRefPubMedGoogle Scholar
  11. Chernin E (1952) The relapse phenomenon in Leucocytozoon infections of the domestic duck. Am J Hyg 56:101–118PubMedGoogle Scholar
  12. Christe P, Møller AP, de Lope F (1998) Immunocompetence and nestling survival in the house martin: “the tasty chick hypothesis”. Oikos 83:175–179Google Scholar
  13. Christe P, Møller AP, Saino N, de Lope F (2000) Genetic and environmental components of phenotypic variation in immune response and body size of a colonial bird, the house martin Delichon urbica. Heredity 85:75–83CrossRefPubMedGoogle Scholar
  14. Combes C (2001) Parasitism. University of Chicago Press, Chicago, Ill.Google Scholar
  15. Dawson RD, Bortolotti GR (2000) Effects of hematozoan parasites on condition and return rates of American kestrels. Auk 117:373–380Google Scholar
  16. González G, Sorci G, de Lope F (1999) Seasonal variation in the relationship between cellular immune response and badge size in male house sparrows (Passer domesticus). Behav Ecol Sociobiol 46:117–122CrossRefGoogle Scholar
  17. Goto N, Kodama H, Okada K, Fujimoto Y (1978) Suppression of phytohaemagglutinin skin response in thymectomized chickens. Poult Sci 52:246–250Google Scholar
  18. Hõrak P, Tegelmann L, Ots I, Møller AP (1999) Immune function and survival of great tit nestlings in relation to growth conditions. Oecologia 121:316–322CrossRefGoogle Scholar
  19. Hochberg ME, Michalakis Y, de Meeus T (1992) Parasitism as a constraint on the rate of life-history evolution. J Evol Biol 5:491–504Google Scholar
  20. Korpimäki E, Tolonen P, Bennett GF (1995) Blood parasites, sexual selection and reproductive success of European kestrels. Ecoscience 2:335–343Google Scholar
  21. Lehmann T (1993) Ectoparasites: direct impact on host fitness. Parasitol Today 9:8–13CrossRefGoogle Scholar
  22. Martin T, Møller AP, Merino S, Clobert J (2001) Does clutch size evolve in response to parasites and immunocompetence? Proc Natl Acad Sci U S A 98:2071–2076CrossRefPubMedGoogle Scholar
  23. Mayorga P, Deharo E, Landay I, Couarraze G (1997) Preliminary evaluation of primaquine activity on rodent malaria model after transdermal administration. Parasite 4:87–90PubMedGoogle Scholar
  24. Merilä J, Andersson M (1999) Reproductive effort and success are related to hematozoan infection in blue tits. Ecoscience 6:421–428Google Scholar
  25. Merino S, Potti J, Moreno J (1996) Maternal effort mediates the prevalence of trypanosomes in the offspring of a passerine bird. Proc Natl Acad Sci U S A 93:5726–5730CrossRefPubMedGoogle Scholar
  26. Merino S, Potti J, Fargallo JA (1997) Blood parasites of some passerine birds from Central Spain. J Wildl Dis 33:638–641PubMedGoogle Scholar
  27. Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc R Soc Lond Ser B 267:2507–2510CrossRefGoogle Scholar
  28. Miller LH, Baruch DR, Marsh K, Doumbo OK (2002) The pathogenic basis of malaria. Nature 415:673–679CrossRefPubMedGoogle Scholar
  29. Møller AP (1974) A three-year study in colonies of house martins (Delichon urbica) by means of artificial nests. Flora Fauna 80:74–80Google Scholar
  30. Møller AP (1991) Ectoparasite loads affect optimal clutch size in swallows. Funct Ecol 5:351–359Google Scholar
  31. Møller AP (1997) Parasitism and the evolution of host life history. In: Clayton DH, Moore J (eds) Host-parasite evolution: general principles and avian models. Oxford University Press, Oxford, pp 105–127Google Scholar
  32. Navarro C, Marzal A, de Lope F, Møller AP (2003) Dynamics of an immune response in house sparrow Passer domesticus in relation to time of day, body condition and blood parasite infection. Oikos 101:291–298Google Scholar
  33. Noble ER, Noble GA (1976) Parasitology. Lea and Febiger, Philadelphia, Pa.Google Scholar
  34. Oppliger A, Christe P, Richner H (1996) Clutch size and malaria resistance. Nature 381:565CrossRefPubMedGoogle Scholar
  35. Oppliger A, Christe P, Richner H (1997) Clutch size and malarial parasites in female great tits. Behav Ecol 8:148–152Google Scholar
  36. Pajuelo L, de Lope F, da Silva E (1992) Biología de la reproducción del avión común (Delichon urbica) en Badajoz, España. Ardeola 39:15–23Google Scholar
  37. Parmentier HK, Scharma JW, Meijer F, Nieuwland MGB (1993) Cutaneous hypersensitivity responses in chickens divergently selected for antibody responses to sheep red blood cells. Poult Sci 72:1679–1692PubMedGoogle Scholar
  38. Price PV (1980) Evolutionary biology of parasites. Princeton University Press, Princeton, N.J.Google Scholar
  39. Redig PT, Talbot B, Guamera T (1993) Avian malaria. In: Proceedings of the Annual Conference of the Association of Avian Veterinarians. AAV, Lake Worth, Fla., pp 173–181Google Scholar
  40. Richner H, Heeb P (1995) Are clutch and brood size patterns in birds shaped by ectoparasites? Oikos 73:435–441Google Scholar
  41. Roff DA (2001) Life history evolution. Sinauer Associates, Sunderland, Mass.Google Scholar
  42. Saino N, Calza S, Møller AP (1997) Immunocompetence of nestling barn swallows in relation to brood size and parental effort. J Anim Ecol 66:827–836Google Scholar
  43. Saino N, Ferrari R, Romano M, Martinelli R, Møller AP (2003) Experimental manipulation of egg quality affects immunity of barn swallow nestlings. Proc R Soc Lond Ser B 270:2485–2489CrossRefGoogle Scholar
  44. Sanz JJ, Arriero E, Moreno J, Merino S (2001) Interactions between hemoparasite status and female age in the primary reproductive output of pied flycatchers. Oecologia 126:339–344CrossRefGoogle Scholar
  45. Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321CrossRefGoogle Scholar
  46. Smits J, Bortolotti G, Tella J (1999) Simplifying the phytohemagglutinin skin-testing technique in studies of avian immunocompetence. Funct Ecol 13:567–572CrossRefGoogle Scholar
  47. Soler M, Martín-Vivaldi M, Marín JM, Møller AP (1999) Weight lifting and health status in the black wheatear. Behav Ecol 10:281–286CrossRefGoogle Scholar
  48. Sundberg J (1995) Parasites, plumage coloration and reproductive success in the yellowhammer, Emberiza citrinella. Oikos 74:331–339Google Scholar
  49. Surai PF (2003) Natural antioxidants in avian nutrition and reproduction. Nottingham University Press, NottinghamGoogle Scholar
  50. Wakelin D (1996) Immunity to parasites: how parasitic infections are controlled. Cambridge University Press, CambridgeGoogle Scholar
  51. Wiehn J, Korpimäki E, Pen I (1999) Haematozoan infections in the Eurasian kestrel: effects of fluctuating food supply and experimental manipulation of paternal effort. Oikos 84:87–98Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Alfonso Marzal
    • 1
  • Florentino de Lope
    • 1
  • Carlos Navarro
    • 1
  • Anders Pape Møller
    • 2
  1. 1.Departamento de Biología AnimalUniversidad de ExtremaduraBadajozSpain
  2. 2.Laboratoire de Parasitologie Evolutive, CNRS UMR 7103Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations