Oecologia

, Volume 141, Issue 1, pp 158–163 | Cite as

Does climate at different scales influence the phenology and phenotype of the River Warbler Locustella fluviatilis?

  • Pavel Kaňuščák
  • Martin Hromada
  • Piotr Tryjanowski
  • Tim Sparks
Global Change Ecology

Abstract

Weather and climatic conditions may impact on the phenology and morphology of birds, and thereby affect their survival rate and population dynamics. We examined the North Atlantic Oscillation (NAO), precipitation in the Sahel zone, temperatures in the wintering grounds, on the migration route, and in the breeding area in relation to arrival dates and six morphological measures (wing, tarsus, bill, and tail lengths, body mass, body condition) in a Slovak population of the River Warbler Locustella fluviatilis. Arrival dates did not change significantly over the study period, but were significantly positively correlated with NAO, although not with temperatures in wintering areas, migration route or breeding area, nor with Sahel precipitation. Four of the six morphological traits changed during the study period and part of the change in condition index can be attributed to climatic variables. We suggest changes in birds’ phenotype vary with food availability, which fluctuate according to climate events.

Keywords

Body condition Climate effects Migration Morphology NAO 

References

  1. Berthold P, Helbig AJ, Mohr G, Querner U (1992) Rapid microevolution of migratory behavior in a wild bird species. Nature 360:668–670CrossRefGoogle Scholar
  2. Cotton PA (2003) Avian migration phenology and global climate change. Proc Natl Acad Sci USA 100:12219–12222CrossRefPubMedGoogle Scholar
  3. Dittberner H, Dittberner W (1987) Bebrütung der Eier, Schlupf, Jungenaufzucht und postnatale Entwicklung beim Schlagschwirl (Locustella fluviatilis) (Aves, Passeriformes, Sylviidae). Zool Abhandl 42:195–223Google Scholar
  4. Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302:1027–1030CrossRefPubMedGoogle Scholar
  5. Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711CrossRefPubMedGoogle Scholar
  6. Grant PR, Grant BR, Keller LF, Petren K (2000) Effects of El Niño events on Darwin’s finch productivity. Ecology 81:2442–2457Google Scholar
  7. Hubálek Z (2003) Spring migration of birds in relation to North Atlantic Oscillation. Folia Zool 52:287–298Google Scholar
  8. Hüppop O, Hüppop K (2003) North Atlantic Oscillation and timing of spring migration in birds. Proc R Soc Lond B 270:233–240CrossRefPubMedGoogle Scholar
  9. Janowiak JE (1988) An investigation of interannual rainfall variability in Africa. J Climate 1:240–255CrossRefGoogle Scholar
  10. Kaňuščák P, Mutkovič A (1993) Nistbiologie und Verbreitung des Schlagschwirls, Locustella fluviatilis (Wolf 1810), in der Westslowakei. Falke 40:186–205Google Scholar
  11. Lehikoinen E, Sparks TH, Zalakevicius M (2004) Arrival and departure dates. In: Møller AP, Fiedler W, Berthold P (eds) The effect of climate change on birds. Advances in ecological research. Academic Press, London, (in press)Google Scholar
  12. Mackowicz R (1989) Breeding biology of the river warbler Locustella fluviatilis (Wolf, 1810) in north-eastern Poland. Acta Zool Cracov 32:331–437Google Scholar
  13. Marchant JH (1992) Recent trends in breeding populations of some common trans-Saharan migrant birds in northern Europe. Ibis 134 [suppl1]:S113–S119Google Scholar
  14. Marra PP, Hobson KA, Holmes RT (1998) Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science 282:1884–1886CrossRefPubMedGoogle Scholar
  15. Mitchell TD, Hulme M, New M (2002) Climate data for political areas. Area 34:109–112CrossRefGoogle Scholar
  16. Møller AP, Erritzøe J (2003) Climate, body condition and spleen size in birds. Oecologia 442:621–626CrossRefGoogle Scholar
  17. Nowakowski JJ (2000) Long-term variability of wing length in population of reed warbler Acrocephalus scirpaceus. Acta Ornithol 35:173–182Google Scholar
  18. Nowakowski JJ (2002) Variation of morphometric parameters within the Savi’s warbler (Locustella luscinioides) population in eastern Poland. Ring 24:49–67Google Scholar
  19. Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC (2001) Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–14CrossRefGoogle Scholar
  20. Peach W, Baillie S, Underhill L (1991) Survival of British sedge warblers Acrocephalus schoenobaenus in relation to West African rainfall. Ibis 133:300–305Google Scholar
  21. Pearson DJ, Backhurst GC (1983) Moult in the river warbler Locustella fluviatilis. Ring Migrat 4:227–230CrossRefGoogle Scholar
  22. Piersma T, Davidson NC (1991) Confusion of mass and size. Auk 108:441–444Google Scholar
  23. Przybylo R, Sheldon BC, Merilä J (2000) Climatic effects on breeding and morphology: evidence for phenotypic plasticity. J Anim Ecol 69:395–403CrossRefGoogle Scholar
  24. Smith TB (1990) Natural selection on bill characters in two bill morphs of the African finch Pyrenestes ostrinus. Evolution 44:832–842Google Scholar
  25. Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan K-S, Yoccoz NG, Adlandsvik B (2003) Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Nino Southern Oscillation and beyond. Proc R Soc Lond B 270:2087–2096CrossRefPubMedGoogle Scholar
  26. Szép T (1995) Relationship between West African rainfall and the survival of the Central European adult sand martin (Riparia riparia) population. Ibis 137:162–168Google Scholar
  27. Todte I (2001) Beringung und Wiederfang von Schlagschwirlen Locustella fluviatilis in Ostdeutschland. Ber Vogelw Hiddensee 16:63–70Google Scholar
  28. Tryjanowski P, Kuźniak S, Sparks T (2002) Earlier arrival of some farmland migrants in western Poland. Ibis 144:62-68CrossRefGoogle Scholar
  29. Tucker JJ (1978) A river warbler Locustella fluviatilis ‘wintering’ and moulting in Zambia. Bull Br Ornithol Club 98:2–4Google Scholar
  30. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefPubMedGoogle Scholar
  31. Yom-Tov Y (2001) Global warming and body mass decline in Israeli passerine birds. Proc R Soc Lond B 268:947–952CrossRefPubMedGoogle Scholar
  32. Yom-Tov Y, Benjamini Y, Kark S (2002) Global warming, Bergmann’s rule and body mass—are they related? The chukar partridge (Alectoris chukar) case. J Zool 257:449–455CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Pavel Kaňuščák
    • 1
  • Martin Hromada
    • 2
  • Piotr Tryjanowski
    • 3
    • 4
  • Tim Sparks
    • 4
  1. 1.Zavretý kút 42/16Piešt’anySlovakia
  2. 2.Department of ZoologyUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Department of Avian Biology and EcologyAdam Mickiewicz UniversityPoznańPoland
  4. 4.NERC Centre for Ecology and HydrologyHuntingdonUK

Personalised recommendations