Oecologia

, Volume 139, Issue 2, pp 255–266 | Cite as

Liquid-feeding performances of ants (Formicidae): ecological and evolutionary implications

  • Diane W. Davidson
  • Steven C. Cook
  • Roy R. Snelling
Plant Animal Interactions

Abstract

Disparities in liquid-feeding performances of major ant taxa have likely been important to resource partitioning among ants, to the nature and composition of ant partnerships with plants and sap-feeding trophobionts, and to ecological and evolutionary diversification of ant taxa. We measured performance volumetrically for individual workers of 77 ant species from lowland rain forests of Amazonia and Borneo and three key North American taxa. In trials with 9% sucrose solution, performances were strongly related to body size (and alitrunk length) and to proventricular structure at generic to subfamilial levels. Highly modified proventriculi were associated with disproportionately large load sizes in Formicinae and certain small-bodied Dolichoderinae. These same taxa also ingested liquids more rapidly during foraging than did similar-sized species with plesiomorphic proventriculi. Secondarily reduced foraging performances of several formicines likely reflect ecological or evolutionary trade-offs related to dietary specialization or anti-predator defenses. Across formicines and dolichoderines, performances differed by functional group. Relatively small loads and slow uptake characterized species tending trophobionts (mainly Hemiptera) day and night in large worker aggregations. Large loads and rapid uptake typified solitary, diurnal “leaf-foragers.” Intermediate feeding performances characterized a few species that both tended trophobionts in small aggregates and frequently foraged alone.

Keywords

Activity rhythms Load sizes Proventriculus Trophobiont-tending Uptake rates 

Notes

Acknowledgements

Studies were supported by the U. S. National Science Foundation (no. IBN-9707932 to D.W.D.). We thank Peru
tm)s Instituto Nacional de Recursos Naturales (INRENA), and officials of the Parque Nacional Manu, Universidad Nacional Agraria de La Molina, the Universiti Brunei Darussalam, and the Brunei Museums, for granting or facilitating permissions to study and collect inside national parks. Specimens are vouchered in the Los Angeles County Natural History Museum and either (Peru) the Museo de Entomología of the Universidad National Agraria La Molina (or Museo de Historia Natural) or (Brunei) the Brunei Museums. For determinations of ant taxa, we thank E.O. Wilson (Pheidole), R.J. Kohout (Polyrhachis), and J.T. Longino (Crematogaster). D. Bramble and the reviewers commented helpfully on prior drafts, and E. King trained S. Cook in microscopy. M. Kilvington and T.H. Chua generously provide hospitality in Brunei. In 1974, W.L. Brown Jr, now deceased, first hinted to D.W.D. of a relationship between the sepalous proventriculus and the ecological and evolutionary success of formicines.

Supplementary material

Appendices I • III

app.pdf (132 kb)
(PDF 494 KB)

References

  1. Attygalle AB, Mutti A, Rohe W, Maschwitz U, Garbe W, Bestmann HJ (1998) Trail pheromone from the Pavan gland of the ant Dolichoderus thoracicus (Smith). Naturwissenschaften 85:275-277CrossRefGoogle Scholar
  2. Baroni Urbani C, de Andrade ML (1997) Pollen eating, storing and spitting by ants. Naturwissenschaften 84:256•258CrossRefGoogle Scholar
  3. Baroni-Urbani C, Bolton B, Ward PS (1992) The internal phylogeny of ants (Hymenoptera: Formicidae). Syst Entomol 17:301•329Google Scholar
  4. Becerra JX, Venable DL (1989) Extrafloral nectaries: a defense against ant-Homoptera mutualisms? Oikos 55:276•280Google Scholar
  5. Blakeman JP (1971) The chemical environment of the leaf surface in relation to growth of pathogenic fungi. In: Preece TF, Dickinson CH (eds) Ecology of leaf surface microorganisms. Academic, New York, pp 255•268Google Scholar
  6. Blñ/4thgen N, Fiedler K (2002) Interactions between weaver ants Oecophylla smaragdina, homopterans, trees and lianas in an Australian rain forest canopy. J Anim Ecol 71:793•801Google Scholar
  7. Blñ/4thgen N, Fiedler K (2003) Competition for composition: lessons from nectar-feeding ant communities. Ecology (in press)Google Scholar
  8. Blñ/4thgen N, Verhaagh M, Goitia W, Jaffe K, Morawetz W, Barthlott W (2000) How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia 125:229•240CrossRefGoogle Scholar
  9. Blñ/4thgen N, Gebauer G, Fiedler K (2003) Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia 137:426•435CrossRefPubMedGoogle Scholar
  10. Bolton B (1995) A new general catalog of the ants of the world. Harvard University Press, Cambridge, Mass.Google Scholar
  11. Brñ/4hl CA, Gunsalam G, Linsenmair KE (1998) Stratification of ants (Hymenoptera, Formicidae) in a primary rain forest in Sabah, Borneo. J Trop Ecol 14:285•297CrossRefGoogle Scholar
  12. Chiotis M, Jermiin LS, Crozier RH (2000) A molecular framework for the phylogeny of the ant subfamily Dolichoderinae. Mol Phylogen Evol 17:108•116CrossRefGoogle Scholar
  13. Davidson DW (1988) Ecological studies of neotropical ant gardens. Ecology 69:1138•1152Google Scholar
  14. Davidson DW (1997) The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biol J Linn Soc 61:153•181CrossRefGoogle Scholar
  15. Davidson DW (1998) Resource discovery versus resource domination in ants: breaking the trade-off. Ecol Entomol 23:484•490CrossRefGoogle Scholar
  16. Davidson DW, McKey D (1993) The evolutionary ecology of symbiotic ant-plant relationships. J Hymenopt Res 2:13•83Google Scholar
  17. Davidson DW, Cook SC, Snelling RR, Chua TH (2003) Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:969•972CrossRefPubMedGoogle Scholar
  18. Dejean A, McKey D, Gibernau M, Belin M (2000) The arboreal ant mosaic in a Cameroonian rainforest (Hymenoptera: Formicidae). Sociobiology 35:403•423Google Scholar
  19. Dohlen von C, Moran NA (1995) Molecular phylogeny of the Homoptera: a paraphyletic taxon. J Mol Evol 41:211•223PubMedGoogle Scholar
  20. Eisner T (1957) A comparative morphological study of the proventriculus of ants (Hymenoptera: Formicidae). Bull Mus Comp Zool 116:441•490Google Scholar
  21. Eisner T, Brown WL Jr (1958) The evolution and social significance of the ant proventriculus. Proc 10th Intl Congr Entomol 2:503•508Google Scholar
  22. Eisner T, Wilson EO (1952) The morphology of the proventriculus of a formicine ant. Psyche 59:47•60Google Scholar
  23. Fiala B (1990) Extrafloral nectaries vs ant-Homoptera mutualisms: a comment on Becerra and Venable. Oikos 59:281•282Google Scholar
  24. Gil R et al (2003) The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes. Proc Natl Acad Sci USA 100:9388•9393CrossRefPubMedGoogle Scholar
  25. Graham P, Collett TS (2002) View-based navigation in insects: how wood ants (Formica rufa L.) look at and are guided by extended landmarks. J Exp Biol 205:2499-2509PubMedGoogle Scholar
  26. Gronenberg W, Hölldobler B (1999) Morphologic representation of visual and antennal information in the ant brain. J Comp Neurol 412:229•240CrossRefPubMedGoogle Scholar
  27. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, OxfordGoogle Scholar
  28. Heil M, Fiala B, Baumann B, Linsenmair KE (2000) Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Funct Ecol 14:749-757CrossRefGoogle Scholar
  29. Heil M, Koch T, Hilpert A, Fiala B, Boland W, Linsenmair KE (2001) Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proc Natl Acad Sci USA 98:1083-1088CrossRefPubMedGoogle Scholar
  30. Hölldobler B (1980) Canopy orientation: a new kind of orientation in ants. Science 210:86•88Google Scholar
  31. Hölldobler B, Taylor RW (1983) A behavioral study of the primitive ant Nothomyrmecia macrops. Insect Soc 30:384•401Google Scholar
  32. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge, Mass.Google Scholar
  33. Hossaert-McKey M, Orivel J, Labeyrie E, Pascal L, Delabie JHC, Dejean A (2001) Differential associations with ants of three co-occurring extrafloral nectary-bearing plants. Ecoscience 8:325-335Google Scholar
  34. Josens RB, Roces F (2000) Foraging in the ant Camponotus mus: nectar-intake rate and crop filling depend on colony starvation. J Insect Physiol 46:1103•1110CrossRefPubMedGoogle Scholar
  35. Josens RB, Farina WM, Roces F (1998) Nectar feeding by the ant Camponotus mus: intake rate and crop filling as a function of sucrose concentration. J Insect Physiol 44:579•585CrossRefGoogle Scholar
  36. Longino JT (2003) The Crematogaster (Hymenoptera, Formicidae, Myrmicinae) of Costa Rica. Zootaxa 15:1•150Google Scholar
  37. Maschwitz U, Haenel H (1985) The migrating herdsman Dolichoderus cuspidatus and ant with a novel mode of life. Sociobiology 17:171•184Google Scholar
  38. Maschwitz U, Maschwitz E (1974) Platzende Arbeiterinnen: eine neue Art der Feindabwehr bei sozialen Hautflñ/4glern. Oecologia 14:289•294Google Scholar
  39. Mayr G (1862) Myrmecologische studien. Verh Zool-Bot Ges Wien 12:649•776Google Scholar
  40. McKey D (1984) Interaction of the ant-plant Leonardoxa africana (Caesalpiniaceae) with its obligate inhabitants in a rainforest in Cameroon. Biotropica 16:81•99Google Scholar
  41. Messina FJ (1981) Plant protection as a consequence of an ant membracid mutualisms: interactions on goldenrod Solidago sp. Ecology 62:1433•1440Google Scholar
  42. Moran NA, Plague GR, Sandstrom JP, Wilcox JL (2003) A genomic perspective on nutrient provisioning by bacterial symbionts of insects. Proc Natl Acad Sci USA 100:14543•14548CrossRefPubMedGoogle Scholar
  43. Oliveira PS, Del-Claro K (2004) Multitrophic interactions in a neotropical savanna: ant-hemipteran systems, associated insect herbivores, and host plants. In: Burslem DFRP, Pinard MA, Hartley SE (eds) Biotic interactions in the tropics. Cambridge University Press, CambridgeGoogle Scholar
  44. Pfeiffer M, Linsenmair KE (2000) Contributions to the life history of the Malaysian giant ant Camponotus gigas (Hymenoptera, Formicidae). Insect Soc 47:123•132Google Scholar
  45. Read AF, Nee S (1995) Inference from binary comparative data. J Theor Biol 173:99•108CrossRefGoogle Scholar
  46. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223•225Google Scholar
  47. SAS Institute (2001) JMP version 4.0.4. SAS institute, Cary, N.C.Google Scholar
  48. Schmid-Hempel P, Kacelnik A, Houston AI (1985) Honeybees maximize efficiency by not filling their crop. Behav Ecol Sociobiol 17:61•66Google Scholar
  49. Shattuck SO (1992a) Generic revision of the ant subfamily Dolichoderinae (Hymenoptera: Formicidae). Sociobiology 21:1•181Google Scholar
  50. Shattuck SO (1992b) Higher classification of the ant subfamilies Aneuretinae, Dolichoderinae and Formicinae (Hymenoptera: Formicidae). Syst Ent 17:199•206Google Scholar
  51. Shattuck SO (1992c) Review of the dolichoderine ant genus Iridomyrmex Mayr with descriptions of three new genera (Hymenoptera: Formicidae). J Aust Entomol Soc 31:13•18Google Scholar
  52. Sokal RR, Rohlf FJ (1969) Biometry. Freeman, San FranciscoGoogle Scholar
  53. Swain RB (1980) Trophic competition among parabiotic ants. Insect Soc 27:377•390Google Scholar
  54. Tjallingii WF (1995) Regulation of phloem sap feeding by aphids. In: Chapman RF, de Boer G (eds) Regulatory mechanisms in insect feeding. Chapman & Hall, New York, pp 120•209Google Scholar
  55. Wheeler WM (1910) Ants. Columbia University Press, New YorkGoogle Scholar
  56. Wilson EO (2003) Pheidole in the New World. Harvard University Press, Cambridge, Mass.Google Scholar
  57. Yao I, Akimoto SI (2002) Flexibility in the composition and concentration of amino acids in honeydew of the drepanosiphid aphid Tuberculatus quercicola. Ecol Entomol 27:745•752CrossRefGoogle Scholar
  58. Yu DW, Davidson DW (1997) Experimental studies of species-specificity in Cecropia-ant relationships. Ecol Monogr 67:273•294Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Diane W. Davidson
    • 1
  • Steven C. Cook
    • 2
  • Roy R. Snelling
    • 3
  1. 1.Department of BiologyUniversity of UtahSalt Lake CityUSA
  2. 2.Department of BiologyUniversity of UtahSalt Lake CityUSA
  3. 3.Entomology SectionNatural History Museum of Los AngelesLos AngelesUSA

Personalised recommendations