, Volume 138, Issue 1, pp 5–12 | Cite as

Stable isotope ecology in the Ituri Forest

  • Thure E. Cerling
  • John A. Hart
  • Terese B. Hart
Stable Isotope Ecology


The Ituri Forest, Democratic Republic of Congo (formerly Zaire) is an example of a closed canopy forest showing extreme depletion in 13C. δ13C values for plants from the canopy top, from gaps in the canopy, and from the subcanopy average −29.0±1.7‰, −30.4±0.9‰, and −34.0±1.5‰, respectively. The δ13C of forest mammals show these differences, with the subcanopy browsers (okapi, dwarf antelope) having δ13C values for tooth enamel much more negative than subcanopy frugivores who derive their food from the canopy top, and from folivores and omnivores living in gap or clearing areas. Nitrogen isotopes in plants from this ecosystem have an average δ15N value of 5.4±1.8‰ and do not show significant differences at the 95% confidence interval between plants from the canopy top, from gaps in the canopy, and from the subcanopy. The δ18OSMOW values of surface waters in the study area are between −2.0 and −2.7. The δ18OPDB for tooth enamel ranged from −3 to +7‰.


Isotopes Ituri Forest Carbon-13 Diet 


  1. Bender MM (1971) Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:1239–1245CrossRefGoogle Scholar
  2. Bryant JD, Luz B, Froelich PN (1994) Oxygen isotopic composition of fossil horse tooth phosphate as a record of continental paleoclimate. Palaeoecol Palaeogeogr Palaeoclimatol 107:303–316CrossRefGoogle Scholar
  3. Cerling TE, Harris JM (1999) Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120:247–363Google Scholar
  4. Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene–Pliocene boundary. Nature 389:153–158CrossRefGoogle Scholar
  5. Cerling TE, Harris JM, Leakey MG (1999) Browsing and grazing in elephants: the isotope record of modern and fossil proboscideans. Oecologia 120:364–374CrossRefGoogle Scholar
  6. Cerling TE, Harris JM, Passey BH (2003) Diets of East African Bovidae based on stable isotope analysis. J Mammal 84:456–470Google Scholar
  7. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506Google Scholar
  8. Ehleringer JR, Cooper TA (1988) Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia 76:562–566Google Scholar
  9. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Mol Biol 40:503–537Google Scholar
  10. Harris JM, Cerling TE (2002) Dietary adaptations of extant and Neogene African suids. J Zool 256:45–54Google Scholar
  11. Hart JA (2001) Diversity and abundance in an African forest ungulate community and implications for conservation. In: Weber W, White LJT, Vedder A, Naughton-Treves L (eds) African rain forest ecology and conservation. Yale University Press, New Haven, pp 183–206Google Scholar
  12. Hart TB, Hart JA, Dechamps R, Fournier M, Ataholo M (1996) Changes in forest composition over the last 4000 years in the Ituri basin, Zaire. In: Van der Maesen JG, Van der Burgt XM, Van Medenbach de Rooy JM (eds) The biodiversity of African plants. Kluwer, Amsterdam, pp 545–563Google Scholar
  13. Koch PL (1998) Isotopic reconstruction of past continental environments. Annu Rev Earth Planet Sci 26:573–613CrossRefGoogle Scholar
  14. Kohn MJ (1996) Predicting animal δ18O: accounting for diet and physiological adaption. Geochim Cosmochim Acta 60:4811–4829CrossRefGoogle Scholar
  15. Lee-Thorp J, Van der Merwe NJ (1987) Carbon isotope analysis of fossil bone apatite. S Afr J Sci 83:712–715Google Scholar
  16. Longinelli, A (1984) Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochim Cosmochim Acta 48:385–390CrossRefGoogle Scholar
  17. Medina E, Minchin P (1980) Stratification of δ13C values of leaves in Amazonian rain forests. Oecologia 45:377–378Google Scholar
  18. Medina E, Montes G, Cuevas E, Roksandic Z (1986) Profiles of CO2 and δ13C values of the upper Rio Negro Basin, Venezuela. J Trop Ecol 2:207–217Google Scholar
  19. Quade J, Cerling TE, Barry JC, Morgan ME, Pilbeam DR, Chivas AR, Lee-Thorp JA, Van der Merwe NJ (1992) A 16-Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan. Chem Geol (Isot Geosci Sect) 94:183–192Google Scholar
  20. Sponheimer M, Lee-Thorp J, De Ruiter D, Smith J, Van der Merwe NJ, Reed K, Ayliffe L, Heidelberger C, Marcus W (2003) Diets of Southern African Bovidae: the stable isotope evidence. J Mammal 84:471–479Google Scholar
  21. Van der Merwe NJ, Medina E (1989) Photosynthesis and 13C/12C ratios in Amazonian rain forests. Geochim Cosmochim Acta 53:1091–1094CrossRefGoogle Scholar
  22. Van der Merwe NJ, Lee-Thorp JA, Thackeray JF, Hall-Martin A, Kruger FJ, Coetzee H, Bell RHV, Lindeque M (1990) Source area determination of elephant ivory by isotopic analysis. Nature 346:744–746CrossRefGoogle Scholar
  23. Yakir D (1997) Oxygen-18 of leaf water: a crossroad for plant associated isotopic signals. In: Griffiths H (ed) Stable isotopes: integration of biological, ecological, and geochemical processes. BIOS, Oxford, pp 147–168Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Thure E. Cerling
    • 1
  • John A. Hart
    • 2
  • Terese B. Hart
    • 2
  1. 1.Department of Geology and Geophysics, Department of BiologyUniversity of UtahSalt Lake CityUSA
  2. 2.International ProgramsWildlife Conservation SocietyBronxUSA

Personalised recommendations