, Volume 137, Issue 4, pp 617–620

Founder population size and number of source populations enhance colonization success in waterstriders

  • Petri Ahlroth
  • Rauno V. Alatalo
  • Anne Holopainen
  • Tomi Kumpulainen
  • Jukka Suhonen
Conservation Ecology


Understanding the factors that underlie colonization success is crucial both for ecological theory and conservation practices. The most effective way to assess colonization ability is to introduce experimentally different sets of individuals in empty patches of suitable habitat and to monitor the outcome. We translocated mated female waterstriders, Aquarius najas, into 90 streams that were not currently inhabited by the species. We manipulated sizes of propagules (from 2 to 16 mated females) and numbers of origin populations (one or two). Three origin populations were genetically different from each other, but they were less than 150 km from the streams of translocation. The results demonstrate clearly that both the larger propagule size and the high number of source populations have positive effects on the probability of colonizing a new stream. Thus, in addition to the stochastic factors related to the propagule size it may be essential to consider also the diversity of genetic origin for colonization success.


Aquarius najas Finland Gerridae Propagule size Streams 


  1. Ahlroth P (1999) Dispersal and life-history differences between waterstrider (Aquarius najas) populations. Biol Res Rep Univ Jyväskylä 1–36Google Scholar
  2. Ahlroth P, Alatalo RV, Hyvärinen E, Suhonen J (1999) Geographical variation in wing polymorphism of the waterstrider Aquarius najas (Heteroptera, Gerridae). J Evol Biol 12:156–160CrossRefGoogle Scholar
  3. Berggren Å (2001) Colonization success in roesel’s bush-cricket Metrioptera roeseli: the effect of propagule size. Ecology 82:274–280Google Scholar
  4. Ebenhart T (1989) Bank vole (Clethrinomys glareolus (Schreber 1789)) propagules of different sizes and island colonisation. J Biogeogr 16:173–180Google Scholar
  5. Ebert D, Haag C, Kirkpatrick M, Riek M, Hottinger JW, Pajunen VI (2002) A selective advantage to immigrant genes in a Daphia metapopulation. Science 295:485–488CrossRefPubMedGoogle Scholar
  6. Griffith B, Scott JM, Carpenter JW, Reed C (1989) Translocation as a species conservation tool: status and strategy. Science 245:477–480Google Scholar
  7. Hanski I, Pöyry J, Pakkala T, Kuussaari M (1995a) Multiple equilibria in metapopulation dynamics. Nature 377:618–621CrossRefGoogle Scholar
  8. Hanski I, Pakkala T, Kuussaari M, Lei G (1995b) Metapopulation persistence of an endangered butterfly in a fragmented landscape. Oikos 72:21–28Google Scholar
  9. Harrison S, Murphy DD, Ehrich PR (1988) Distribution of the Way checkerspot butterfly, Euphydryas editha bayensis: evidence for a metapopulation model. Am Nat 132:360–382CrossRefGoogle Scholar
  10. Huldén L (1979) Gerris najas DeGeer 1773 (Heteroptera Gerridae) populationsdynamik och utbredningshistoria I Finland. Masters thesis, University of Helsinki, FinlandGoogle Scholar
  11. Korkeamäki E, Suhonen J (2002) Distribution and habitat specialization of species affect local extinction in dragonfly Odonata populations. Ecography 25:459–465CrossRefGoogle Scholar
  12. Kuussaari M, Nieminen M, Hanski I (1996) An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. J Anim Ecol 65:791–801Google Scholar
  13. Lammes T, Rinne V (1990) Maps of the provincial distribution of Finnish Heteroptera. Entomol Fenn 1:209–220Google Scholar
  14. Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460PubMedGoogle Scholar
  15. Leberg PL (1993) Strategies for population reintroduction: Effects of genetic variability on population growth and size. Conserv Biol 7:194–199Google Scholar
  16. Linnavuori R (1966) Suomen eläimet. Nivelkärsäiset 1. Anim Fenn 10Google Scholar
  17. Madsen T, Shine R, Olsson M, Wittzell H (1999) Restoration of an inbred adder population. Nature 402:34–35CrossRefGoogle Scholar
  18. McCauley DE (1991) Genetic consequences of local population extinction and recolonisation. Trends Ecol Evol 6:5–8CrossRefGoogle Scholar
  19. Newman D, Pilson D (1997) Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarcia pulchella. Evolution 51:354–362Google Scholar
  20. Rassi P, Alanen A, Kanerva T, Mannerkoski I (eds) (2001) Suomen lajien uhanalaisuus 2000. Ympäristöministeriö and Suomenympäristökeskus, HelsinkiGoogle Scholar
  21. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, and Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494Google Scholar
  22. Schoener TW, Schoener A (1983) The time to extinction of a colonizing propagule of lizards increases with island area. Nature 302:332–334Google Scholar
  23. Schoener TW, Spiller DA (1987) High population persistence in a system with high turnover. Nature 330:474–477CrossRefGoogle Scholar
  24. Schoener TW, Spiller DA (1995) Effect of predators and area on invasion: an experiment with island spiders. Science 267:1811–1813Google Scholar
  25. Shaffer ML, Samson FB (1985) Population size and extinction: a note on determining critical population sizes. Am Nat 125:144–152CrossRefGoogle Scholar
  26. Veltman CJ, Nee S, Crawley MJ (1996) Correlates of introduction success in exotic New Zealand birds. Am Nat 147:542–557CrossRefGoogle Scholar
  27. Vepsäläinen K (1973) The distribution and habitats of Gerris Fabr. species (Heteroptera, Gerridae) in Finland. Ann Zool Fenn 10:419–444Google Scholar
  28. Vepsäläinen K, Krajewski S (1986) Identification of the waterstrider (Gerridae) nymphs of northern Europe. Ann Entomol Fenn 52: 63-77Google Scholar
  29. Vepsäläinen K, Nummelin M (1985) Female territoriality in the waterstriders Gerris najas and G. cinereus. Ann Zool Fenn 22:433–439Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Petri Ahlroth
    • 1
  • Rauno V. Alatalo
    • 1
  • Anne Holopainen
    • 1
  • Tomi Kumpulainen
    • 1
  • Jukka Suhonen
    • 1
  1. 1.Department of Biological and Environmental Science University of JyväskyläJyväskyläFinland

Personalised recommendations