Skip to main content

Advertisement

Log in

Substances for regenerative wound healing during antler renewal stimulated scar-less restoration of rat cutaneous wounds

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Scarification is the outcome of cutaneous wound healing under normal conditions. Although considerable effort has been expended in this field, scar-less healing has not been achieved satisfactorily. The lack of a good model of scar-free healing has contributed to this undesirable situation. However, the annual regeneration of deer antlers, which starts from regenerative wound healing over the top of the pedicles (permanent bony protuberances), may provide such a model. Therefore, in this study, we investigated the process of pedicle wound healing at the organ, tissue, cell, and molecular levels. Our results convincingly demonstrate that wounds over the pedicle preceded a regenerative healing process including regeneration of skin appendages, such as hair follicles. Compared to the scar healing in rats, regenerative healing of the pedicle wound exhibited a weaker inflammatory response, lack of myofibroblast induction, and higher ratios of Col III/Col I, TGF-β3/TGF-β1, and MMP/TIMP. Importantly, our periosteal transplantation experiments in vivo revealed that this regenerative healing process was achieved through induction of antler stem cells (ASCs). Further study showed that this effect of ASCs on regenerative healing was not species-specific but more generic and could be applied to other mammalian species, as injection of ASCs stimulated regenerative healing of full-thickness excisional cutaneous wounds in rats. Overall, our findings show that ASCs may have therapeutic potential in enhancing the quality of wound healing and preventing scar formation in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The transcriptome sequencing data for deer has been deposited in the Sequence Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra/) under accession number: SRR13407542; SRR13407538; SRR13407541; SRR13407543; SRR13407539; SRR13407540.

References

  • Adzick NS, Longaker MT (1991) Animal models for the study of fetal tissue repair. J Surg Res 51:92–125

    Article  Google Scholar 

  • Akita S (2019) Wound repair and regeneration: mechanisms, signaling. Int J Mol Sci 20:6328

    Article  PubMed Central  Google Scholar 

  • Barrientos S, Brem H, Stojadinovic O, Tomic-Canic M (2014) Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen 22:569–578

    Article  PubMed  PubMed Central  Google Scholar 

  • Bojanic C, To K, Hatoum A, Shea J, Seah KTM, Khan W, Malata CM (2021) Mesenchymal stem cell therapy in hypertrophic and keloid scars. Cell Tissue Res. https://doi.org/10.1007/s00441-020-03361-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown BC, McKenna SP, Siddhi K, McGrouther DA, Bayat A (2008) The hidden cost of skin scars: quality of life after skin scarring. J Plast Reconstr Aesthet Surg 61:1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Cha J, Falanga V (2007) Stem cells in cutaneous wound healing. Clin Dermatol 25:73–78

    Article  PubMed  Google Scholar 

  • Chablais F, Jazwinska A (2010) IGF signaling between blastema and wound epidermis is required for fin regeneration. Development 137:871–879

    Article  CAS  PubMed  Google Scholar 

  • Clark RA, Ghosh K, Tonnesen MG (2007) Tissue engineering for cutaneous wounds. J Invest Dermatol 127:1018–1029

    Article  CAS  PubMed  Google Scholar 

  • Delavary BM, van der Veer WM, van Egmond M, Niessen FB, Beelen RHJ (2011) Macrophages in skin injury and repair. Immunobiology 216:753–762

    Article  PubMed  CAS  Google Scholar 

  • Delorme SL, Lungu IM, Vickaryous MK (2012) Scar-free wound healing and regeneration following tail loss in the Leopard Gecko, Eublepharis macularius. Anat Rec 295:1575–1595

    Article  CAS  Google Scholar 

  • Edmondson SR, Thumiger SP, Werther GA, Wraight CJ (2003) Epidermal homeostasis: the role of the growth hormone and insulin-like growth factor systems. Endocr Rev 24:737–764

    Article  CAS  PubMed  Google Scholar 

  • Eming SA, Martin P, Tomic-Canic M (2014) Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 6:265sr6

  • Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23:257–258

    Article  CAS  PubMed  Google Scholar 

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    Article  CAS  PubMed  Google Scholar 

  • Goss RJ (1995) Future directions in antler research. Anat Rec 241:291–302

    Article  CAS  PubMed  Google Scholar 

  • Goss RJ (1983) Chondrogenesis in regenerating systems. In: Hall B (ed) Cartilage: biomedical aspects. Academic Press, New York, pp 267–370

    Chapter  Google Scholar 

  • Godwin JW, Pinto AR, Rosenthala RNA (2013) Macrophages are required for adult salamander limb regeneration. PNAS 110:9415–9420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godwin J, Kuraitis D, Rosenthal N (2014) Extracellular matrix considerations for scar-free repair and regeneration: insights from regenerative diversity among vertebrates. Int J Biochem Cell Biol 56:47–55

    Article  CAS  PubMed  Google Scholar 

  • He Y, Fischer D, Hasan I, Götz W, Keilig L, Ziegler L, Abboud M, Bourauel C, Wahl G (2018) Sika deer antler as a novel model to investigate dental implant healing: a pilot experimental study. PLoS One 13:e0200957. https://doi.org/10.1371/journal.pone.0200957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godwin JW, Brockes JP (2006) Regeneration, tissue injury and the immune response. J Anat 209:423–432

    Article  PubMed  PubMed Central  Google Scholar 

  • Kierdorf U, Stoffels E, Stoffels D, Kierdorf H, Szuwart T, Clemen G (2003) Histological studies of bone formation during pedicle restoration and early antler regeneration in roe deer and fallow deer. Anat Rec 273A:741–751

    Article  Google Scholar 

  • Kim WS, Park BS, Sung JH, Yang JM, Park SB, Kwak SJ, Park JS (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48:15–24

    Article  CAS  PubMed  Google Scholar 

  • Klinkhammer BM, Floege J, Boor P (2018) PDGF in organ fibrosis. Mol Asp Med 62:44–62

  • Larson BJ, Longaker MT, Lorenz HP (2010) Scarless fetal wound healing: a basic science review. Plast Reconstr Surg 126(4):1172–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lévesque M, Villiard É, Roy S (2010) Skin wound healing in axolotls: a scarless process. J Exp Zool 314B:684–697

    Article  Google Scholar 

  • Li C, Suttie JM (1994) Light microscopic studies of pedicle and early first antler development in red deer (Cervus elaphus). Anat Rec 239:198–215

    Article  CAS  PubMed  Google Scholar 

  • Li C, Suttie JM (2001) Deer antlerogenic periosteum: a piece of postnatally retained embryonic tissue? Anat Embryol (Berl) 204:375–388

  • Li C, Suttie JM (2003) Tissue collection methods for antler research. Eur J Morphol 41:23–30

    Article  CAS  PubMed  Google Scholar 

  • Li C, Mackintosh CG, Martin SK, Clark DE (2007) Identification of key tissue type for antler regeneration through pedicle periosteum deletion. Cell Tissue Res 328:65–75

    Article  PubMed  Google Scholar 

  • Li C, Suttie JM, Clark DE (2005) Histological examination of antler regeneration in red deer (Cervus elaphus). Anat Rec A Discov Mol Cell Evol Biol 282A:163–174

    Article  Google Scholar 

  • Li C, Chu WH (2016) The regenerating antler blastema: the derivative of stem cells resident in a pedicle stump. Front Biosci (Landmark Ed) 21:455–467

    Article  Google Scholar 

  • Li C, Yang FH, Suttie J (2011) Stem cells, stem cell niche and antler development. Anim Prod Sci 51:267–276

    Article  Google Scholar 

  • Li C, Yang F, Sheppard A (2009) Adult stem cells and mammalian epimorphic regeneration-insights from studying annual renewal of deer antlers. Curr Stem Cell Res Ther 4:237–251

    Article  CAS  PubMed  Google Scholar 

  • Li C, Yang F, Haines S, Zhao H, Wang W, Xing X, Sun H, Chu W, Lu X, Liu L, McMahon C (2010) Stem cells responsible for deer antler regeneration are unable to recapitulate the process of first antler development—revealed through intradermal and subcutaneous tissue transplantation. J Exp Zool 314:552–570

    Article  Google Scholar 

  • Li M, Luan F, Zhao Y, Hao H, Liu J, Dong L, Fu X, Han W (2017) Mesenchymal stem cell-conditioned medium accelerates wound healing with fewer scars. Int Wound J 14:64–73

    Article  PubMed  Google Scholar 

  • Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Moeini A, Pedram P, Makvandi P, Malinconico M, Gomez d’Ayala G (2020) Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.115839

    Article  PubMed  Google Scholar 

  • Namazi MR, Feily A (2011) Homocysteine may accelerate skin aging: a new chapter in the biology of skin senescence? J Am Acad Dermatol 64:1175-1178

  • Neufeld DA, Day FA, Perspective, (1996a) A suggested role for basement membrane structures during newt limb regeneration. Anat Rec 246:155–161

    Article  CAS  PubMed  Google Scholar 

  • Neufeld DA, Day FA, Settles HE (1996b) Stabilizing role of the basement membrane and dermal fibers during newt limb regeneration. Anat Rec 245:122–127

    Article  CAS  PubMed  Google Scholar 

  • Olczyk P, Mencner Ł, Komosinska-Vassev K (2014) The role of the extracellular matrix components in cutaneous wound healing. Biomed Res Int. https://doi.org/10.1155/2014/747584

    Article  PubMed  PubMed Central  Google Scholar 

  • Peacock HM, Gilbert EA, Vickaryous MK (2015) Scar-free cutaneous wound healing in the leopard gecko, Eublepharis macularius. J Anat 227:596–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price J, Faucheux C, Allen S (2005) Deer antlers as a model of Mammalian regeneration. Curr Top Dev Biol 67:1–48

    Article  CAS  PubMed  Google Scholar 

  • Qi K, Li N, Zhang Z, Melino G (2018) Tissue regeneration: the crosstalk between mesenchymal stem cells and immune response. Cell Immunol 326:86–93

    Article  CAS  PubMed  Google Scholar 

  • Reinke JM, Sorg H (2012) Wound repair and regeneration. Eur Surg Res 49:35–43

    Article  CAS  PubMed  Google Scholar 

  • Richardson R, Slanchev K, Kraus C, Knyphausen P, Eming S, Hammerschmidt M (2013) Adult zebrafish as a model system for cutaneous wound healing research. J Invest Dermatol 133:1655–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohani MG, Parks WC (2015) Matrix remodeling by MMPs during wound repair. Matrix Biol 44–46:113–121

    Article  PubMed  CAS  Google Scholar 

  • Roderfeld M (2018) Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol 68–69:452–462

    Article  PubMed  CAS  Google Scholar 

  • Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H (2006) Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula. J Mol Med 84:901–910

    Article  CAS  PubMed  Google Scholar 

  • Seifert AW, Monaghan JR, Voss SR, Maden M (2012) Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates. PLoS One 7:e32875

  • Semenova E, Koegel H, Hasse S, Klatte J, Slonimsky E, Bilbao D, Paus R, Werner S, Rosenthal N (2008) Overexpression of mIGF-1 in keratinocytes improves wound healing and accelerates hair follicle formation and cycling in mice. Am J Pathol 173:1295–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw TJ, Martin P (2016) Wound repair: a showcase for cell plasticity and migration. Curr Opin Cell Biol 42:29–37

    Article  CAS  PubMed  Google Scholar 

  • Stoica AE, Grumezescu AM, Hermenean AO, Andronescu E, Vasile BS (2020) Scar-free healing: current concepts and future perspectives. Nanomaterials (basel) 10:2179

    Article  CAS  Google Scholar 

  • Takeo M, Lee W, Ito M (2015) Wound healing and skin regeneration. Cold Spring Harb Perspect Med 5:a02326

  • Wang DT, Berg D, Ba HX, Sun HM, Wang Z, Li C (2019) Deer antler stem cells are a novel type of cells that sustain full regeneration of a mammalian organ—deer antler. Cell Death Dis 10:443

    Article  PubMed  PubMed Central  Google Scholar 

  • Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol 83:835–870

    CAS  Google Scholar 

  • Yates CC, Hebda P, Wells A (2013) Skin wound healing and scarring: fetal wounds and regenerative restitution. Birth Defects Res C 96:325–333

    Article  CAS  Google Scholar 

  • Zhao J, Hu L, Liu J, Gong N, Chen L (2013) The effects of cytokines in adipose stem cell-conditioned medium on the migration and proliferation of skin fbroblasts in vitro. BioMed Res Int. https://doi.org/10.1155/2013/578479

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Peter Fennessy of AbacusBio Limited, Dunedin, New Zealand, for helping review the manuscript, and staff from the Deer Antler Research Group, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, for the help of collection of antler stem cells.

Funding

This work was funded by the Technology Development Plan Project of Jilin Province (20200404004YY and 20190304006YY), Provincial Natural Science Foundation of Jilin (2020201031JC), National Natural Science Foundation of China (U20A20403 and 31901058), and National key Research and Development Project (2018YFC1706603-03).

Author information

Authors and Affiliations

Authors

Contributions

QG, CL, and HZ conceived and designed the experiment. QG and ZL performed the experiments. JZ, QG, and HZ performed bioinformatics and statistical analyses. QG and CL drafted the manuscript. HZ, JZ, and CL revised the manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Haiping Zhao or Chunyi Li.

Ethics declarations

Ethics statement

This study was approved by the Animal Ethics Committee of Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences (Permit Number: NO.ISAPSAEC-2020–022).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 23 KB)

Supplementary file2 (XLS 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Liu, Z., Zheng, J. et al. Substances for regenerative wound healing during antler renewal stimulated scar-less restoration of rat cutaneous wounds. Cell Tissue Res 386, 99–116 (2021). https://doi.org/10.1007/s00441-021-03505-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03505-9

Keywords

Navigation