Advertisement

Cell and Tissue Research

, Volume 379, Issue 1, pp 5–12 | Cite as

Plakophilins and their roles in diseased states

  • Ilse HofmannEmail author
Review
  • 72 Downloads

Abstract

Tissue homeostasis is maintained by several cellular mechanisms and an imbalance may lead to diseased states. Here, the plakophilins 1, 2 and 3 operate as structural components and stabilize desmosomal cell-cell contacts. In their non-junctional states, they serve as regulators of signaling programs and control varied cellular processes that range from transcription, mRNA abundance, protein synthesis, growth, proliferation, migration to invasion and tumor development. Accordingly, mutations in plakophilins 1 and 2 lead to skin or heart diseases. Corresponding to their strong impact on tissue homeostasis, the expression of plakophilins is specifically deregulated in various cancer types and can be correlated with patients’ survival. However, our understanding on how plakophilins contribute to tumor development, progression and metastasis in a given tumor is still in its infancy and further in-depth studies using patient-derived data together with in vitro data and animal models are required.

Keywords

Plakophilin (PKP) Desmosome Non-junctional state Inherited disease Cancer 

Notes

Acknowledgments

I thank Werner Franke for his long-lasting and generous support that fostered my development as an independent researcher.

Funding information

Funding by the German Cancer Aid (107861, 109248) and the “Deutsche Forschungsgemeinschaft” (HO2455/3-1) is greatly acknowledged.

References

  1. Aigner K, Descovich L, Mikula M, Sultan A, Dampier B, Bonne S, van Roy F, Mikulits W, Schreiber M, Brabletz T, Sommergruber W, Schweifer N, Wernitznig A, Beug H, Foisner R, Eger A (2007) The transcription factor ZEB1 (deltaEF1) represses plakophilin 3 during human cancer progression. FEBS Lett 581:1617–1624PubMedPubMedCentralGoogle Scholar
  2. Arimoto K, Burkart C, Yan M, Ran D, Weng S, Zhang DE (2014) Plakophilin-2 promotes tumor development by enhancing ligand-dependent and -independent epidermal growth factor receptor dimerization and activation. Mol Cell Biol 34:3843–3854PubMedPubMedCentralGoogle Scholar
  3. Boyero L, Sanchez-Palencia A, Miranda-Leon MT, Hernandez-Escobar F, Gomez-Capilla JA, Farez-Vidal ME (2013) Survival, classifications, and desmosomal plaque genes in non-small cell lung cancer. Int J Med Sci 10:1166–1173PubMedPubMedCentralGoogle Scholar
  4. Breuninger S, Reidenbach S, Sauer CG, Strobel P, Pfitzenmaier J, Trojan L, Hofmann I (2010) Desmosomal plakophilins in the prostate and prostatic adenocarcinomas: implications for diagnosis and tumor progression. Am J Pathol 176:2509–2519PubMedPubMedCentralGoogle Scholar
  5. Broussard JA, Getsios S, Green KJ (2015) Desmosome regulation and signaling in disease. Cell Tissue Res 360:501–512PubMedPubMedCentralGoogle Scholar
  6. Cerrone M, Montnach J, Lin X, Zhao YT, Zhang M, Agullo-Pascual E, Leo-Macias A, Alvarado FJ, Dolgalev I, Karathanos TV, Malkani K, Van Opbergen CJM, van Bavel JJA, Yang HQ, Vasquez C, Tester D, Fowler S, Liang F, Rothenberg E, Heguy A, Morley GE, Coetzee WA, Trayanova NA, Ackerman MJ, van Veen TAB, Valdivia HH, Delmar M (2017) Plakophilin-2 is required for transcription of genes that control calcium cycling and cardiac rhythm. Nat Commun 8:106PubMedPubMedCentralGoogle Scholar
  7. Demirag GG, Sullu Y, Gurgenyatagi D, Okumus NO, Yucel I (2011) Expression of plakophilins (PKP1, PKP2, and PKP3) in gastric cancers. Diagn Pathol 6:1PubMedPubMedCentralGoogle Scholar
  8. Demirag GG, Sullu Y, Yucel I (2012) Expression of plakophilins (PKP1, PKP2, and PKP3) in breast cancers. Med Oncol 29:1518–1522PubMedGoogle Scholar
  9. Fischer-Keso R, Breuninger S, Hofmann S, Henn M, Rohrig T, Strobel P, Stoecklin G, Hofmann I (2014) Plakophilins 1 and 3 bind to FXR1 and thereby influence the mRNA stability of desmosomal proteins. Mol Cell Biol 34:4244–4256PubMedPubMedCentralGoogle Scholar
  10. Franke WW (2009) Discovering the molecular components of intercellular junctions--a historical view. Cold Spring Harb Perspect Biol 1:a003061PubMedPubMedCentralGoogle Scholar
  11. Franke WW, Rickelt S, Barth M, Pieperhoff S (2009) The junctions that don’t fit the scheme: special symmetrical cell-cell junctions of their own kind. Cell Tissue Res 338:1–17PubMedPubMedCentralGoogle Scholar
  12. Furukawa C, Daigo Y, Ishikawa N, Kato T, Ito T, Tsuchiya E, Sone S, Nakamura Y (2005) Plakophilin 3 oncogene as prognostic marker and therapeutic target for lung cancer. Cancer Res 65:7102–7110PubMedGoogle Scholar
  13. Gerull B, Heuser A, Wichter T, Paul M, Basson CT, McDermott DA, Lerman BB, Markowitz SM, Ellinor PT, MacRae CA, Peters S, Grossmann KS, Drenckhahn J, Michely B, Sasse-Klaassen S, Birchmeier W, Dietz R, Breithardt G, Schulze-Bahr E, Thierfelder L (2004) Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet 36:1162–1164PubMedGoogle Scholar
  14. Gomez-Morales M, Camara-Pulido M, Miranda-Leon MT, Sanchez-Palencia A, Boyero L, Gomez-Capilla JA, Farez-Vidal ME (2013) Differential immunohistochemical localization of desmosomal plaque-related proteins in non-small-cell lung cancer. Histopathology 63:103–113PubMedGoogle Scholar
  15. Grossmann KS, Grund C, Huelsken J, Behrend M, Erdmann B, Franke WW, Birchmeier W (2004) Requirement of plakophilin 2 for heart morphogenesis and cardiac junction formation. J Cell Biol 167:149–160PubMedPubMedCentralGoogle Scholar
  16. Guillot C, Lecuit T (2013) Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340:1185–1189PubMedGoogle Scholar
  17. Guzikowski AR, Chen YS, Zid BM (2019) Stress-induced mRNP granules: form and function of processing bodies and stress granules. Wiley Interdiscip Rev RNA 10:e1524PubMedPubMedCentralGoogle Scholar
  18. Haase D, Cui T, Yang L, Ma Y, Liu H, Theis B, Petersen I, Chen Y (2019) Plakophilin 1 is methylated and has a tumor suppressive activity in human lung cancer. Exp Mol Pathol 108:73–79PubMedGoogle Scholar
  19. Hao XL, Tian Z, Han F, Chen JP, Gao LY, Liu JY (2019) Plakophilin-2 accelerates cell proliferation and migration through activating EGFR signaling in lung adenocarcinoma. Pathol Res Pract 215:152438PubMedGoogle Scholar
  20. Harmon RM, Green KJ (2013) Structural and functional diversity of desmosomes. Cell Commun Adhes 20:171–187PubMedGoogle Scholar
  21. Harris TM, Du P, Kawachi N, Belbin TJ, Wang Y, Schlecht NF, Ow TJ, Keller CE, Childs GJ, Smith RV, Angeletti RH, Prystowsky MB, Lim J (2015) Proteomic analysis of oral cavity squamous cell carcinoma specimens identifies patient outcome-associated proteins. Arch Pathol Lab Med 139:494–507PubMedGoogle Scholar
  22. Hatzfeld M, Nachtsheim C (1996) Cloning and characterization of a new armadillo family member, p0071, associated with the junctional plaque: evidence for a subfamily of closely related proteins. J Cell Sci 109(Pt 11):2767–2778PubMedGoogle Scholar
  23. Hatzfeld M, Kristjansson GI, Plessmann U, Weber K (1994) Band 6 protein, a major constituent of desmosomes from stratified epithelia, is a novel member of the armadillo multigene family. J Cell Sci 107(Pt 8):2259–2270PubMedGoogle Scholar
  24. Hatzfeld M, Green KJ, Sauter H (2003) Targeting of p0071 to desmosomes and adherens junctions is mediated by different protein domains. J Cell Sci 116:1219–1233PubMedGoogle Scholar
  25. Hatzfeld M, Wolf A, Keil R (2014) Plakophilins in desmosomal adhesion and signaling. Cell Commun Adhes 21:25–42PubMedGoogle Scholar
  26. Heid HW, Schmidt A, Zimbelmann R, Schafer S, Winter-Simanowski S, Stumpp S, Keith M, Figge U, Schnolzer M, Franke WW (1994) Cell type-specific desmosomal plaque proteins of the plakoglobin family: plakophilin 1 (band 6 protein). Differentiation 58:113–131PubMedGoogle Scholar
  27. Hofmann I, Casella M, Schnolzer M, Schlechter T, Spring H, Franke WW (2006) Identification of the junctional plaque protein plakophilin 3 in cytoplasmic particles containing RNA-binding proteins and the recruitment of plakophilins 1 and 3 to stress granules. Mol Biol Cell 17:1388–1398PubMedPubMedCentralGoogle Scholar
  28. Hofmann I, Kuhn C, Franke WW (2008) Protein p0071, a major plaque protein of non-desmosomal adhering junctions, is a selective cell-type marker. Cell Tissue Res 334:381–399PubMedGoogle Scholar
  29. Hofmann I, Schlechter T, Kuhn C, Hergt M, Franke WW (2009) Protein p0071 - an armadillo plaque protein that characterizes a specific subtype of adherens junctions. J Cell Sci 122:21–24PubMedGoogle Scholar
  30. Hulpiau P, Gul IS, van Roy F (2013) New insights into the evolution of metazoan cadherins and catenins. Prog Mol Biol Transl Sci 116:71–94PubMedGoogle Scholar
  31. Kaz AM, Luo Y, Dzieciatkowski S, Chak A, Willis JE, Upton MP, Leidner RS, Grady WM (2012) Aberrantly methylated PKP1 in the progression of Barrett’s esophagus to esophageal adenocarcinoma. Genes Chromosom Cancer 51:384–393PubMedGoogle Scholar
  32. Kundu ST, Gosavi P, Khapare N, Patel R, Hosing AS, Maru GB, Ingle A, Decaprio JA, Dalal SN (2008) Plakophilin3 downregulation leads to a decrease in cell adhesion and promotes metastasis. Int J Cancer 123:2303–2314PubMedGoogle Scholar
  33. Leitner L, Shaposhnikov D, Mengel A, Descot A, Julien S, Hoffmann R, Posern G (2011) MAL/MRTF-A controls migration of non-invasive cells by upregulation of cytoskeleton-associated proteins. J Cell Sci 124:4318–4331PubMedGoogle Scholar
  34. Li Y, Ju K, Wang W, Liu Z, Xie H, Jiang Y, Jiang G, Lu J, Dong Z, Tang F (2018) Dinitrosopiperazine-decreased PKP3 through upregulating miR-149 participates in nasopharyngeal carcinoma metastasis. Mol Carcinog 57:1763–1779PubMedPubMedCentralGoogle Scholar
  35. Macara IG, Guyer R, Richardson G, Huo Y, Ahmed SM (2014) Epithelial homeostasis. Curr Biol 24:R815–R825PubMedPubMedCentralGoogle Scholar
  36. McCrea PD, Gottardi CJ (2016) Beyond beta-catenin: prospects for a larger catenin network in the nucleus. Nat Rev Mol Cell Biol 17:55–64PubMedGoogle Scholar
  37. McGrath JA, Mellerio JE (2010) Ectodermal dysplasia-skin fragility syndrome. Dermatol Clin 28:125–129PubMedGoogle Scholar
  38. McGrath JA, McMillan JR, Shemanko CS, Runswick SK, Leigh IM, Lane EB, Garrod DR, Eady RA (1997) Mutations in the plakophilin 1 gene result in ectodermal dysplasia/skin fragility syndrome. Nat Genet 17:240–244PubMedGoogle Scholar
  39. McMillan JR, Haftek M, Akiyama M, South AP, Perrot H, McGrath JA, Eady RA, Shimizu H (2003) Alterations in desmosome size and number coincide with the loss of keratinocyte cohesion in skin with homozygous and heterozygous defects in the desmosomal protein plakophilin 1. J Invest Dermatol 121:96–103PubMedGoogle Scholar
  40. Mertens C, Kuhn C, Franke WW (1996) Plakophilins 2a and 2b: constitutive proteins of dual location in the karyoplasm and the desmosomal plaque. J Cell Biol 135:1009–1025PubMedGoogle Scholar
  41. Mertens C, Kuhn C, Moll R, Schwetlick I, Franke WW (1999) Desmosomal plakophilin 2 as a differentiation marker in normal and malignant tissues. Differentiation 64:277–290PubMedGoogle Scholar
  42. Mertens C, Hofmann I, Wang Z, Teichmann M, Sepehri Chong S, Schnolzer M, Franke WW (2001) Nuclear particles containing RNA polymerase III complexes associated with the junctional plaque protein plakophilin 2. Proc Natl Acad Sci U S A 98:7795–7800PubMedPubMedCentralGoogle Scholar
  43. Moll I, Kurzen H, Langbein L, Franke WW (1997) The distribution of the desmosomal protein, plakophilin 1, in human skin and skin tumors. J Invest Dermatol 108:139–146PubMedGoogle Scholar
  44. Monaco G, Lee B, Xu W, Mustafah S, Hwang YY, Carre C, Burdin N, Visan L, Ceccarelli M, Poidinger M, Zippelius A, de Magalhaes JP, Larbi A (2019) RNA-seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep 26:1627–1640.e1627PubMedPubMedCentralGoogle Scholar
  45. Muhmer M, Ditthardt D, Jakel J, Wischmann V, Moll R, Schmidt A (2014) An alternative promoter of the human plakophilin-3 gene controls the expression of the new isoform PKP3b. Cell Tissue Res 355:143–162PubMedGoogle Scholar
  46. Muller J, Ritt DA, Copeland TD, Morrison DK (2003) Functional analysis of C-TAK1 substrate binding and identification of PKP2 as a new C-TAK1 substrate. EMBO J 22:4431–4442PubMedPubMedCentralGoogle Scholar
  47. Munoz WA, Kloc M, Cho K, Lee M, Hofmann I, Sater A, Vleminckx K, McCrea PD (2012) Plakophilin-3 is required for late embryonic amphibian development, exhibiting roles in ectodermal and neural tissues. PLoS One 7:e34342PubMedPubMedCentralGoogle Scholar
  48. Munoz WA, Lee M, Miller RK, Ahmed Z, Ji H, Link TM, Lee GR, Kloc M, Ladbury JE, McCrea PD (2014) Plakophilin-3 catenin associates with the ETV1/ER81 transcription factor to positively modulate gene activity. PLoS One 9:e86784PubMedPubMedCentralGoogle Scholar
  49. Muthuswamy SK, Xue B (2012) Cell polarity as a regulator of cancer cell behavior plasticity. Annu Rev Cell Dev Biol 28:599–625PubMedPubMedCentralGoogle Scholar
  50. Narayana N, Gist J, Smith T, Tylka D, Trogdon G, Wahl JK (2010) Desmosomal component expression in normal, dysplastic, and oral squamous cell carcinoma. Dermatol Res Pract 2010:649731PubMedPubMedCentralGoogle Scholar
  51. Nekrasova O, Green KJ (2013) Desmosome assembly and dynamics. Trends Cell Biol 23:537–546PubMedPubMedCentralGoogle Scholar
  52. Neuber S, Jager S, Meyer M, Wischmann V, Koch PJ, Moll R, Schmidt A (2015) C-Src mediated tyrosine phosphorylation of plakophilin 3 as a new mechanism to control desmosome composition in cells exposed to oxidative stress. Cell Tissue Res 359:799–816PubMedGoogle Scholar
  53. Niell N, Larriba MJ, Ferrer-Mayorga G, Sanchez-Perez I, Cantero R, Real FX, Del Peso L, Munoz A, Gonzalez-Sancho JM (2018) The human PKP2/plakophilin-2 gene is induced by Wnt/beta-catenin in normal and colon cancer-associated fibroblasts. Int J Cancer 142:792–804PubMedGoogle Scholar
  54. Oka D, Yamashita S, Tomioka T, Nakanishi Y, Kato H, Kaminishi M, Ushijima T (2009) The presence of aberrant DNA methylation in noncancerous esophageal mucosae in association with smoking history: a target for risk diagnosis and prevention of esophageal cancers. Cancer 115:3412–3426PubMedGoogle Scholar
  55. Papagerakis S, Shabana AH, Depondt J, Gehanno P, Forest N (2003) Immunohistochemical localization of plakophilins (PKP1, PKP2, PKP3, and p0071) in primary oropharyngeal tumors: correlation with clinical parameters. Hum Pathol 34:565–572PubMedGoogle Scholar
  56. Pennington KL, Chan TY, Torres MP, Andersen JL (2018) The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein-protein interactions. Oncogene 37:5587–5604PubMedPubMedCentralGoogle Scholar
  57. Qian H, Yuan D, Bao J, Liu F, Zhang W, Yang X, Han G, Huang J, Sheng H, Yu H (2019) Increased expression of plakophilin 3 is associated with poor prognosis in ovarian cancer. Medicine (Baltimore) 98:e14608Google Scholar
  58. Rickelt S, Pieperhoff S (2012) Mutations with pathogenic potential in proteins located in or at the composite junctions of the intercalated disk connecting mammalian cardiomyocytes: a reference thesaurus for arrhythmogenic cardiomyopathies and for Naxos and Carvajal diseases. Cell Tissue Res 348:325–333PubMedPubMedCentralGoogle Scholar
  59. Rickelt S, Winter-Simanowski S, Noffz E, Kuhn C, Franke WW (2009) Upregulation of plakophilin-2 and its acquisition to adherens junctions identifies a novel molecular ensemble of cell-cell-attachment characteristic for transformed mesenchymal cells. Int J Cancer 125:2036–2048PubMedGoogle Scholar
  60. Rietscher K, Wolf A, Hause G, Rother A, Keil R, Magin TM, Glass M, Niessen CM, Hatzfeld M (2016) Growth retardation, loss of desmosomal adhesion, and impaired tight junction function identify a unique role of plakophilin 1 in vivo. J Invest Dermatol 136:1471–1478PubMedGoogle Scholar
  61. Rietscher K, Keil R, Jordan A, Hatzfeld M (2018) 14-3-3 proteins regulate desmosomal adhesion via plakophilins. J Cell Sci 131PubMedGoogle Scholar
  62. Roberts BJ, Reddy R, Wahl JK 3rd (2013) Stratifin (14-3-3 sigma) limits plakophilin-3 exchange with the desmosomal plaque. PLoS One 8:e77012PubMedPubMedCentralGoogle Scholar
  63. Roberts BJ, Johnson KE, McGuinn KP, Saowapa J, Svoboda RA, Mahoney MG, Johnson KR, Wahl JK 3rd (2014) Palmitoylation of plakophilin is required for desmosome assembly. J Cell Sci 127:3782–3793PubMedPubMedCentralGoogle Scholar
  64. Royer C, Lu X (2011) Epithelial cell polarity: a major gatekeeper against cancer? Cell Death Differ 18:1470–1477PubMedPubMedCentralGoogle Scholar
  65. Schmidt A, Jager S (2005) Plakophilins--hard work in the desmosome, recreation in the nucleus? Eur J Cell Biol 84:189–204PubMedGoogle Scholar
  66. Schmidt A, Heid HW, Schafer S, Nuber UA, Zimbelmann R, Franke WW (1994) Desmosomes and cytoskeletal architecture in epithelial differentiation: cell type-specific plaque components and intermediate filament anchorage. Eur J Cell Biol 65:229–245PubMedGoogle Scholar
  67. Schmidt A, Langbein L, Rode M, Pratzel S, Zimbelmann R, Franke WW (1997) Plakophilins 1a and 1b: widespread nuclear proteins recruited in specific epithelial cells as desmosomal plaque components. Cell Tissue Res 290:481–499PubMedGoogle Scholar
  68. Schmidt A, Langbein L, Pratzel S, Rode M, Rackwitz HR, Franke WW (1999) Plakophilin 3--a novel cell-type-specific desmosomal plaque protein. Differentiation 64:291–306PubMedGoogle Scholar
  69. Schmitt-Graeff A, Koeninger A, Olschewski M, Haxelmans S, Nitschke R, Bochaton-Piallat ML, Lifschitz-Mercer B, Gabbiani G, Langbein L, Czernobilsky B (2007) The Ki67+ proliferation index correlates with increased cellular retinol-binding protein-1 and the coordinated loss of plakophilin-1 and desmoplakin during progression of cervical squamous lesions. Histopathology 51:87–97PubMedGoogle Scholar
  70. Schwarz J, Ayim A, Schmidt A, Jager S, Koch S, Baumann R, Dunne AA, Moll R (2006) Differential expression of desmosomal plakophilins in various types of carcinomas: correlation with cell type and differentiation. Hum Pathol 37:613–622PubMedGoogle Scholar
  71. Sklyarova T, Bonne S, D’Hooge P, Denecker G, Goossens S, De Rycke R, Borgonie G, Bosl M, van Roy F, van Hengel J (2008) Plakophilin-3-deficient mice develop hair coat abnormalities and are prone to cutaneous inflammation. J Invest Dermatol 128:1375–1385PubMedGoogle Scholar
  72. Sklyarova T, van Hengel J, Van Wonterghem E, Libert C, van Roy F, Vandenbroucke RE (2015) Hematopoietic plakophilin-3 regulates acute tissue-specific and systemic inflammation in mice. Eur J Immunol 45:2898–2910PubMedGoogle Scholar
  73. Sobolik-Delmaire T, Katafiasz D, Keim SA, Mahoney MG, Wahl JK 3rd (2007) Decreased plakophilin-1 expression promotes increased motility in head and neck squamous cell carcinoma cells. Cell Commun Adhes 14:99–109PubMedGoogle Scholar
  74. Sobolik-Delmaire T, Reddy R, Pashaj A, Roberts BJ, Wahl JK 3rd (2010) Plakophilin-1 localizes to the nucleus and interacts with single-stranded DNA. J Invest Dermatol 130:2638–2646PubMedGoogle Scholar
  75. Takahashi H, Nakatsuji H, Takahashi M, Avirmed S, Fukawa T, Takemura M, Fukumori T, Kanayama H (2012) Up-regulation of plakophilin-2 and down-regulation of plakophilin-3 are correlated with invasiveness in bladder cancer. Urology 79:240.e241–240.e248Google Scholar
  76. Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, Sanli K, von Feilitzen K, Oksvold P, Lundberg E, Hober S, Nilsson P, Mattsson J, Schwenk JM, Brunnström H, Glimelius B, Sjöblom T, Edqvist P-H, Djureinovic D, Micke P, Lindskog C, Mardinoglu A, Ponten F (2017) A pathology atlas of the human cancer transcriptome. Science 357PubMedGoogle Scholar
  77. Valladares-Ayerbes M, Diaz-Prado S, Reboredo M, Medina V, Lorenzo-Patino MJ, Iglesias-Diaz P, Haz M, Pertega S, Santamarina I, Blanco M, Quindos-Varela M, Figueroa A, Anton-Aparicio LM (2010) Evaluation of plakophilin-3 mRNA as a biomarker for detection of circulating tumor cells in gastrointestinal cancer patients. Cancer Epidemiol Biomark Prev 19:1432–1440Google Scholar
  78. Varga J, Greten FR (2017) Cell plasticity in epithelial homeostasis and tumorigenesis. Nat Cell Biol 19:1133–1141PubMedGoogle Scholar
  79. Wang L, Fu B, Li W, Patil G, Liu L, Dorf ME, Li S (2017) Comparative influenza protein interactomes identify the role of plakophilin 2 in virus restriction. Nat Commun 8:13876PubMedPubMedCentralGoogle Scholar
  80. Wang HZ, Wang F, Chen PF, Zhang M, Yu MX, Wang HL, Zhao Q, Liu J (2019) Coexpression network analysis identified that plakophilin 1 is associated with the metastasis in human melanoma. Biomed Pharmacother 111:1234–1242PubMedGoogle Scholar
  81. Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45:1113–1120PubMedPubMedCentralGoogle Scholar
  82. Wolf A, Krause-Gruszczynska M, Birkenmeier O, Ostareck-Lederer A, Huttelmaier S, Hatzfeld M (2010) Plakophilin 1 stimulates translation by promoting eIF4A1 activity. J Cell Biol 188:463–471PubMedPubMedCentralGoogle Scholar
  83. Wolf A, Rietscher K, Glass M, Huttelmaier S, Schutkowski M, Ihling C, Sinz A, Wingenfeld A, Mun A, Hatzfeld M (2013) Insulin signaling via Akt2 switches plakophilin 1 function from stabilizing cell adhesion to promoting cell proliferation. J Cell Sci 126:1832–1844PubMedGoogle Scholar
  84. Yang C, Strobel P, Marx A, Hofmann I (2013) Plakophilin-associated RNA-binding proteins in prostate cancer and their implications in tumor progression and metastasis. Virchows Arch 463:379–390PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Vascular Oncology and Metastasis, DKFZ-ZMBH AllianceGerman Cancer Research CenterHeidelbergGermany
  2. 2.Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
  3. 3.Genomics and Proteomics Core Facility Unit AntibodiesGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations