Dose-dependent mechanism of Notch action in promoting osteogenic differentiation of mesenchymal stem cells

  • Daria Semenova
  • Maria Bogdanova
  • Aleksandra Kostina
  • Alexey Golovkin
  • Anna Kostareva
  • Anna MalashichevaEmail author
Regular Article


Osteogenic differentiation is a tightly regulated process realized by progenitor cell osteoblasts. Notch signaling pathway plays a critical role in skeletal development and bone remodeling. Controversial data exist regarding the role of Notch activation in promoting or preventing osteogenic differentiation. This study aims to investigate the effect of several Notch components and their dosage on osteogenic differentiation of mesenchymal stem cells of adipose tissue. Osteogenic differentiation was induced in the presence of either of Notch components (NICD, Jag1, Dll1, Dll4) dosed by lentiviral transduction. We show that osteogenic differentiation was increased by NICD and Jag1 transduction in a dose-dependent manner; however, a high dosage of both NICD and Jag1 decreased the efficiency of osteogenic differentiation. NICD dose-dependently increased activity of the CSL luciferase reporter but a high dosage of NICD caused a decrease in the activity of the reporter. A high dosage of both Notch components NICD and Jag1 induced apoptosis. In co-culture experiments where only half of the cells were transduced with either NICD or Jag1, only NICD increased osteogenic differentiation according to the dosage, while Jag1-transduced cells differentiated almost equally independently on dosage. In conclusion, activation of Notch promotes osteogenic differentiation in a tissue-specific dose-dependent manner; both NICD and Jag1 are able to increase osteogenic potential but at moderate doses only and a high dosage of Notch activation is detrimental to osteogenic differentiation. This result might be especially important when considering possibilities of using Notch activation to promote osteogenesis in clinical applications to bone repair.


Mesenchymal stem cells Osteogenic differentiation Notch 



This work was supported by the grant of Russian Science Foundation 18-14-00152.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138(17):3593–3612PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bagheri L, Pellati A, Rizzo P, Aquila G, Massari L, De Mattei M, Ongaro A (2018) Notch pathway is active during osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields. J Tissue Eng Regen Med 12(2):304–315PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bai S, Kopan R, Zou W, Hilton MJ, Ong C-t, Long F, Ross FP, Teitelbaum SL (2008) NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem 283(10):6509–6518PubMedCrossRefPubMedCentralGoogle Scholar
  4. Canalis E (2018) Notch in skeletal physiology and disease. Osteoporos Int 29:2611–2621PubMedCrossRefPubMedCentralGoogle Scholar
  5. Canalis E, Bridgewater D, Schilling L, Zanotti S (2016) Canonical Notch activation in osteocytes causes osteopetrosis. Am J Physiol Endocrinol Metab 310(2):E171–E182PubMedCrossRefPubMedCentralGoogle Scholar
  6. Cao J, Wei Y, Lian J, Yang L, Zhang X, Xie J, Liu Q, Luo J, He B, Tang M (2017) Notch signaling pathway promotes osteogenic differentiation of mesenchymal stem cells by enhancing BMP9/Smad signaling. Int J Mol Med 40(2):378–388PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cui J, Zhang W, Huang E, Wang J, Liao J, Li R, Yu X, Zhao C, Zeng Z, Shu Y, Zhang R, Yan S, Lei J, Yang C, Wu K, Wu Y, Huang S, Ji X, Li A, Gong C, Yuan C, Zhang L, Liu W, Huang B, Feng Y, An L, Zhang B, Dai Z, Shen Y, Luo W, Wang X, Huang A, Luu HH, Reid RR, Wolf JM, Thinakaran G, Lee MJ, He TC (2018) BMP9-induced osteoblastic differentiation requires functional Notch signaling in mesenchymal stem cells. Lab Investig 99:58–71PubMedCrossRefPubMedCentralGoogle Scholar
  8. Deregowski V, Gazzerro E, Priest L, Rydziel S, Canalis E (2006) Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/β-catenin but not bone morphogenetic protein signaling. J Biol Chem 281(10):6203–6210PubMedCrossRefPubMedCentralGoogle Scholar
  9. Dmitrieva RI, Revittser AV, Klukina MA, Sviryaev YV, Korostovtseva LS, Kostareva AA, Zaritskey AY, Shlyakhto EV (2015) Functional properties of bone marrow derived multipotent mesenchymal stromal cells are altered in heart failure patients, and could be corrected by adjustment of expansion strategies. Aging (Albany NY) 7(1):14CrossRefGoogle Scholar
  10. Doi H, Iso T, Sato H, Yamazaki M, Matsui H, Tanaka T, Manabe I, Arai M, Nagai R, Kurabayashi M (2006) Jagged1-selective notch signaling induces smooth muscle differentiation via a RBP-Jκ-dependent pathway. J Biol Chem 281(39):28555–28564PubMedCrossRefPubMedCentralGoogle Scholar
  11. Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang MM, Chen Y, Wang L, Zheng H, Sutton RE (2008) Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 14(3):299PubMedPubMedCentralCrossRefGoogle Scholar
  12. Guentchev M, McKay RD (2006) Notch controls proliferation and differentiation of stem cells in a dose-dependent manner. Eur J Neurosci 23(9):2289–2296PubMedCrossRefPubMedCentralGoogle Scholar
  13. Guruharsha KG, Kankel MW, Artavanis-Tsakonas S (2012) The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13(9):654–666PubMedPubMedCentralCrossRefGoogle Scholar
  14. Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R (2008a) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14(3):306PubMedPubMedCentralCrossRefGoogle Scholar
  15. Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, Long F (2008b) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14(3):306–314PubMedPubMedCentralCrossRefGoogle Scholar
  16. Ji Y, Ke Y, Gao S (2017) Intermittent activation of notch signaling promotes bone formation. Am J Transl Res 9(6):2933–2944PubMedPubMedCentralGoogle Scholar
  17. Kostina AS, Uspensky VЕ, Irtyuga OB, Ignatieva EV, Freylikhman O, Gavriliuk ND, Moiseeva OM, Zhuk S, Tomilin A, Kostareva АА, Malashicheva AB (2016) Notch-dependent EMT is attenuated in patients with aortic aneurysm and bicuspid aortic valve. Biochim Biophys Acta (BBA) - Mol Basis Dis 1862(4):733–740CrossRefGoogle Scholar
  18. Kovall RA, Gebelein B, Sprinzak D, Kopan R (2017) The canonical Notch signaling pathway: structural and biochemical insights into shape, sugar, and force. Dev Cell 41(3):228–241PubMedPubMedCentralCrossRefGoogle Scholar
  19. Kristoffersen K, Villingshøj M, Poulsen HS, Stockhausen M-T (2013) Level of Notch activation determines the effect on growth and stem cell-like features in glioblastoma multiforme neurosphere cultures. Cancer Biol Ther 14(7):625–637PubMedPubMedCentralCrossRefGoogle Scholar
  20. Liao J, Wei Q, Zou Y, Fan J, Song D, Cui J, Zhang W, Zhu Y, Ma C, Hu X, Qu X, Chen L, Yu X, Zhang Z, Wang C, Zhao C, Zeng Z, Zhang R, Yan S, Wu T, Wu X, Shu Y, Lei J, Li Y, Luu HH, Lee MJ, Reid RR, Ameer GA, Wolf JM, He TC, Huang W (2017a) Notch Signaling Augments BMP9-Induced Bone Formation by Promoting the Osteogenesis-Angiogenesis Coupling Process in Mesenchymal Stem Cells (MSCs). Cell Physiol Biochem 41(5):1905–1923PubMedCrossRefPubMedCentralGoogle Scholar
  21. Liao J, Yu X, Hu X, Fan J, Wang J, Zhang Z, Zhao C, Zeng Z, Shu Y, Zhang R, Yan S, Li Y, Zhang W, Cui J, Ma C, Li L, Yu Y, Wu T, Wu X, Lei J, Wang J, Yang C, Wu K, Wu Y, Tang J, He BC, Deng ZL, Luu HH, Haydon RC, Reid RR, Lee MJ, Wolf JM, Huang W, He TC (2017b) lncRNA H19 mediates BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) through Notch signaling. Oncotarget 8(32):53581–53601PubMedPubMedCentralCrossRefGoogle Scholar
  22. Liu P, Ping Y, Ma M, Zhang D, Liu C, Zaidi S, Gao S, Ji Y, Lou F, Yu F, Lu P, Stachnik A, Bai M, Wei C, Zhang L, Wang K, Chen R, New MI, Rowe DW, Yuen T, Sun L, Zaidi M (2016) Anabolic actions of Notch on mature bone. Proc Natl Acad Sci U S A 113(15):E2152–E2161PubMedPubMedCentralCrossRefGoogle Scholar
  23. Malashicheva A, Kanzler B, Tolkunova E, Trono D, Tomilin A (2007) Lentivirus as a tool for lineage-specific gene manipulations. Genesis 45(7):456–459PubMedCrossRefPubMedCentralGoogle Scholar
  24. Malashicheva A, Bogdanova M, Zabirnyk A, Smolina N, Ignatieva E, Freilikhman O, Fedorov A, Dmitrieva R, Sjöberg G, Sejersen T (2015) Various lamin A/C mutations alter expression profile of mesenchymal stem cells in mutation specific manner. Mol Genet Metab 115(2):118–127PubMedCrossRefPubMedCentralGoogle Scholar
  25. Merry K, Dodds R, Littlewood A, Gowen M (1993) Expression of osteopontin mRNA by osteoclasts and osteoblasts in modelling adult human bone. J Cell Sci 104(Pt 4):1013–1020PubMedPubMedCentralGoogle Scholar
  26. Nofziger D, Miyamoto A, Lyons KM, Weinmaster G (1999) Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development 126(8):1689–1702PubMedPubMedCentralGoogle Scholar
  27. Ongaro A, Pellati A, Bagheri L, Rizzo P, Caliceti C, Massari L, De Mattei M (2016) Characterization of Notch Signaling During Osteogenic Differentiation in Human Osteosarcoma Cell Line MG63. J Cell Physiol 231(12):2652–2663PubMedCrossRefPubMedCentralGoogle Scholar
  28. Salie R, Kneissel M, Vukevic M, Zamurovic N, Kramer I, Evans G, Gerwin N, Mueller M, Kinzel B, Susa M (2010) Ubiquitous overexpression of Hey1 transcription factor leads to osteopenia and chondrocyte hypertrophy in bone. Bone 46(3):680–694PubMedCrossRefPubMedCentralGoogle Scholar
  29. Sciaudone M, Gazzerro E, Priest L, Delany AM, Canalis E (2003) Notch 1 impairs osteoblastic cell differentiation. Endocrinology 144(12):5631–5639PubMedCrossRefPubMedCentralGoogle Scholar
  30. Shimizu T, Tanaka T, Iso T, Matsui H, Ooyama Y, Kawai-Kowase K, Arai M, Kurabayashi M (2011) Notch signaling pathway enhances bone morphogenetic protein 2 (BMP2) responsiveness of Msx2 gene to induce osteogenic differentiation and mineralization of vascular smooth muscle cells. J Biol Chem 286(21):19138–19148PubMedPubMedCentralCrossRefGoogle Scholar
  31. Shindo K, Kawashima N, Sakamoto K, Yamaguchi A, Umezawa A, Takagi M, Katsube K, Suda H (2003) Osteogenic differentiation of the mesenchymal progenitor cells, Kusa is suppressed by Notch signaling. Exp Cell Res 290(2):370–380PubMedCrossRefPubMedCentralGoogle Scholar
  32. Sjöqvist M, Andersson ER (2017) Do as I say, Not (ch) as I do: lateral control of cell fate. Dev Biol 447:58–70PubMedCrossRefPubMedCentralGoogle Scholar
  33. Tezuka KI, Yasuda M, Watanabe N, Morimura N, Kuroda K, Miyatani S, Hozumi N (2002) Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res 17(2):231–239PubMedCrossRefPubMedCentralGoogle Scholar
  34. Ugarte F, Ryser M, Thieme S, Fierro FA, Navratiel K, Bornhauser M, Brenner S (2009) Notch signaling enhances osteogenic differentiation while inhibiting adipogenesis in primary human bone marrow stromal cells. Exp Hematol 37(7):867–875.e861PubMedCrossRefPubMedCentralGoogle Scholar
  35. Urbanek K, Lesiak M, Krakowian D, Koryciak-Komarska H, Likus W, Czekaj P, Kusz D, Sieron AL (2017) Notch signaling pathway and gene expression profiles during early in vitro differentiation of liver-derived mesenchymal stromal cells to osteoblasts. Lab Investig 97(10):1225–1234PubMedCrossRefPubMedCentralGoogle Scholar
  36. Yamamoto S, Schulze KL, Bellen HJ (2014) Introduction to Notch signaling. Methods Mols Biol 1187:1–14CrossRefGoogle Scholar
  37. Youngstrom DW, Dishowitz MI, Bales CB, Carr E, Mutyaba PL, Kozloff KM, Shitaye H, Hankenson KD, Loomes KM (2016) Jagged1 expression by osteoblast-lineage cells regulates trabecular bone mass and periosteal expansion in mice. Bone 91:64–74PubMedPubMedCentralCrossRefGoogle Scholar
  38. Youngstrom DW, Senos R, Zondervan RL, Brodeur JD, Lints AR, Young DR, Mitchell TL, Moore ME, Myers MH, Tseng WJ, Loomes KM, Hankenson KD (2017) Intraoperative delivery of the Notch ligand Jagged-1 regenerates appendicular and craniofacial bone defects. NPJ Regen Med 2:32PubMedPubMedCentralCrossRefGoogle Scholar
  39. Zanotti S, Canalis E (2014) Notch1 and Notch2 expression in osteoblast precursors regulates femoral microarchitecture. Bone 62:22–28PubMedPubMedCentralCrossRefGoogle Scholar
  40. Zanotti S, Canalis E (2016) Notch signaling and the skeleton. Endocr Rev 37(3):223–253PubMedPubMedCentralCrossRefGoogle Scholar
  41. Zanotti S, Smerdel-Ramoya A, Stadmeyer L, Durant D, Radtke F, Canalis E (2008) Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology 149(8):3890–3899PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Almazov Federal Medical Research CentreSt. PetersburgRussia
  2. 2.Saint-Petersburg State UniversitySt. PetersburgRussia
  3. 3.Institute of Cytology, Russian Academy of SciencesSt.PetersburgRussia

Personalised recommendations