Advertisement

Co-expression network analysis identified key genes in association with mesenchymal stem cell osteogenic differentiation

  • Wang Yang
  • Yuhan Xia
  • Xiaoli Qian
  • Meijing Wang
  • Xiaoling ZhangEmail author
  • Yulin LiEmail author
  • Lisha LiEmail author
Regular Article
  • 66 Downloads

Abstract

Although several studies have shown that osteogenic differentiation of different mesenchymal stem cell (MSC) lines can be guided by the 3D scaffold with growth factors or biochemical agent, the key mechanism regulating osteogenic differentiation is not known yet. Here, this study was designed to investigate key genes that regulate the induction of osteogenesis by different MSC lines in different ways. Expression profiling by array (GSE58919 and GSE18043) was downloaded and analyzed using weighted gene co-expression network analysis (WGCNA) to narrow genes associated with osteogenic differentiation. A protein-protein interactive (PPI) network was built to find the key genes and the role of these key genes was confirmed by statistical analysis. To understand the function of genes associated with osteogenesis, gene ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG) were analyzed, which showed that key genes in MSC osteogenic differentiation induced by a biochemical agent involve regulation of cell apoptosis and proliferation while key genes in MSC osteogenic differentiation induced by the 3D scaffold with growth factors involve regulation of cajal body and centromeres. Furthermore, 58 key genes are involved in Wnt signaling pathway, ion response and focal adhesion. Proteasome also played a key role in osteogenic differentiation. Seven potential key genes were found essential in the osteogenic differentiation of MSCs in the PPI network, especially the five key genes, CCT2, NOP58, FBL, EXOSC8 and SNRPD1. This study will provide important targets of MSC osteogenic differentiation that will help us understand the mechanism of osteogenic differentiation in MSCs.

Keywords

Mesenchymal stem cells WGCNA Osteogenic differentiation Different cultural method GEO 

Notes

Acknowledgments

We thank Kyrkou A and Murphy C for providing the GSE58919 data and Hamidouche Z, Fromigué O, Ringe J, Häupl T, Vaudin P, Srouji S, Livne E and Marie P for the GSE18043 data. We also thank the GEO database.

Funding information

This study was funded by the National Natural Science Foundation of China (Grant No. 81572139).

Supplementary material

441_2019_3071_MOESM1_ESM.pdf (162 kb)
ESM 1 (PDF 162 kb)
441_2019_3071_MOESM2_ESM.pdf (258 kb)
ESM 2 (PDF 257 kb)
441_2019_3071_MOESM3_ESM.pdf (578 kb)
ESM 3 (PDF 578 kb)

References

  1. Alves RD, Eijken M, Swagemakers S, Chiba H, Titulaer MK, Burgers PC, Luider TM, van Leeuwen JP (2010) Proteomic analysis of human osteoblastic cells: relevant proteins and functional categories for differentiation. J Proteome Res 9:4688–4700CrossRefGoogle Scholar
  2. Bouffard S, Dambroise E, Brombin A, Lempereur S, Hatin I, Simion M, Corre R, Bourrat F, Joly JS, Jamen F (2018) Fibrillarin is essential for S-phase progression and neuronal differentiation in zebrafish dorsal midbrain and retina. Dev Biol 437:1–16CrossRefGoogle Scholar
  3. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma'ayan A (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14:128CrossRefGoogle Scholar
  4. Chen X, Yan J, He F, Zhong D, Yang H, Pei M, Luo ZP (2018) Mechanical stretch induces antioxidant responses and osteogenic differentiation in human mesenchymal stem cells through activation of the AMPK-SIRT1 signaling pathway. Free Radic Biol Med 126:187–201CrossRefGoogle Scholar
  5. Gao C, Peng S, Feng P, Shuai C (2017) Bone biomaterials and interactions with stem cells. Bone Res 5:17059CrossRefGoogle Scholar
  6. Giunta M, Edvardson S, Xu Y, Schuelke M, Gomez-Duran A, Boczonadi V, Elpeleg O, Muller JS, Horvath R (2016) Altered RNA metabolism due to a homozygous RBM7 mutation in a patient with spinal motor neuropathy. Hum Mol Genet 25:2985–2996Google Scholar
  7. Golpanian S, Wolf A, Hatzistergos KE, Hare JM (2016) Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiol Rev 96:1127–1168CrossRefGoogle Scholar
  8. Hamidouche Z, Fromigue O, Ringe J, Haupl T, Vaudin P, Pages JC, Srouji S, Livne E, Marie PJ (2009) Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci U S A 106:18587–18591CrossRefGoogle Scholar
  9. Huebsch N, Lippens E, Lee K, Mehta M, Koshy ST, Darnell MC, Desai RM, Madl CM, Xu M, Zhao X, Chaudhuri O, Verbeke C, Kim WS, Alim K, Mammoto A, Ingber DE, Duda GN, Mooney DJ (2015) Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat Mater 14:1269–1277CrossRefGoogle Scholar
  10. Killcoyne S, Carter GW, Smith J, Boyle J (2009) Cytoscape: a community-based framework for network modeling. Methods Mol Biol 563:219–239CrossRefGoogle Scholar
  11. Koyuncu S, Saez I, Lee HJ, Gutierrez-Garcia R, Pokrzywa W, Fatima A, Hoppe T, Vilchez D (2018) The ubiquitin ligase UBR5 suppresses proteostasis collapse in pluripotent stem cells from Huntington's disease patients. Nat Commun 9:2886CrossRefGoogle Scholar
  12. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma'ayan A (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90–W97CrossRefGoogle Scholar
  13. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559CrossRefGoogle Scholar
  14. Li J, Huang Y, Song J, Li X, Zhang X, Zhou Z, Chen D, Ma PX, Peng W, Wang W, Zhou G (2018) Cartilage regeneration using arthroscopic flushing fluid-derived mesenchymal stem cells encapsulated in a one-step rapid cross-linked hydrogel. Acta BiomaterGoogle Scholar
  15. Liu W, Wei Y, Zhang X, Xu M, Yang X, Deng X (2013) Lower extent but similar rhythm of osteogenic behavior in hBMSCs cultured on nanofibrous scaffolds versus induced with osteogenic supplement. ACS Nano 7:6928–6938CrossRefGoogle Scholar
  16. Liu Y, Yang R, Liu X, Zhou Y, Qu C, Kikuiri T, Wang S, Zandi E, Du J, Ambudkar IS, Shi S (2014) Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca(2+) channel sulfhydration. Cell Stem Cell 15:66–78CrossRefGoogle Scholar
  17. Lloret-Llinares M, Karadoulama E, Chen Y, Wojenski LA, Villafano GJ, Bornholdt J, Andersson R, Core L, Sandelin A, Jensen TH (2018) The RNA exosome contributes to gene expression regulation during stem cell differentiation. Nucleic Acids Res 46:11502–11513CrossRefGoogle Scholar
  18. Makino DL, Halbach F, Conti E (2013) The RNA exosome and proteasome: common principles of degradation control. Nat Rev Mol Cell Biol 14:654–660CrossRefGoogle Scholar
  19. Mathiasen AB, Qayyum AA, Jorgensen E, Helqvist S, Fischer-Nielsen A, Kofoed KF, Haack-Sorensen M, Ekblond A, Kastrup J (2015) Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur Heart J 36:1744–1753CrossRefGoogle Scholar
  20. McMillan A, Nguyen MK, Gonzalez-Fernandez T, Ge P, Yu X, Murphy WL, Kelly DJ, Alsberg E (2018) Dual non-viral gene delivery from microparticles within 3D high-density stem cell constructs for enhanced bone tissue engineering. Biomaterials 161:240–255CrossRefGoogle Scholar
  21. Minegishi Y, Nakaya N, Tomarev SI (2018) Mutation in the zebrafish cct2 gene leads to abnormalities of cell cycle and cell death in the retina: a model of CCT2-related leber congenital amaurosis. Invest Ophthalmol Vis Sci 59:995–1004CrossRefGoogle Scholar
  22. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273CrossRefGoogle Scholar
  23. Neben CL, Lay FD, Mao X, Tuzon CT, Merrill AE (2017) Ribosome biogenesis is dynamically regulated during osteoblast differentiation. Gene 612:29–35CrossRefGoogle Scholar
  24. Qin W, Lv P, Fan X, Quan B, Zhu Y, Qin K, Chen Y, Wang C, Chen X (2017) Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis. Proc Natl Acad Sci U S A 114:E6749–e6758CrossRefGoogle Scholar
  25. Saez I, Koyuncu S, Gutierrez-Garcia R, Dieterich C, Vilchez D (2018) Insights into the ubiquitin-proteasome system of human embryonic stem cells. Sci Rep 8:4092CrossRefGoogle Scholar
  26. Sanchez CG, Teixeira FK, Czech B, Preall JB, Zamparini AL, Seifert JR, Malone CD, Hannon GJ, Lehmann R (2016) Regulation of ribosome biogenesis and protein synthesis controls germline stem cell differentiation. Cell Stem Cell 18:276–290CrossRefGoogle Scholar
  27. Sassoli C, Vallone L, Tani A, Chellini F, Nosi D, Zecchi-Orlandini S (2018) Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration. Cell Tissue Res 372:549–570CrossRefGoogle Scholar
  28. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRefGoogle Scholar
  29. Shuai Y, Mao C, Yang M (2018) Protein nanofibril assemblies templated by graphene oxide nanosheets accelerate early cell adhesion and induce osteogenic differentiation of human mesenchymal stem cells. ACS Appl Mater InterfacesGoogle Scholar
  30. Shubina MY, Musinova YR, Sheval EV (2016) Nucleolar methyltransferase fibrillarin: evolution of structure and functions. Biochemistry (Mosc) 81:941–950CrossRefGoogle Scholar
  31. Smolinski DJ, Kolowerzo A (2012) mRNA accumulation in the Cajal bodies of the diplotene larch microsporocyte. Chromosoma 121:37–48CrossRefGoogle Scholar
  32. Stedman A, Beck-Cormier S, Le Bouteiller M, Raveux A, Vandormael-Pournin S, Coqueran S, Lejour V, Jarzebowski L, Toledo F, Robine S, Cohen-Tannoudji M (2015) Ribosome biogenesis dysfunction leads to p53-mediated apoptosis and goblet cell differentiation of mouse intestinal stem/progenitor cells. Cell Death Differ 22:1865–1876CrossRefGoogle Scholar
  33. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550CrossRefGoogle Scholar
  34. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452CrossRefGoogle Scholar
  35. Vilchez D, Boyer L, Morantte I, Lutz M, Merkwirth C, Joyce D, Spencer B, Page L, Masliah E, Berggren WT, Gage FH, Dillin A (2012) Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489:304–308CrossRefGoogle Scholar
  36. Watanabe-Susaki K, Takada H, Enomoto K, Miwata K, Ishimine H, Intoh A, Ohtaka M, Nakanishi M, Sugino H, Asashima M, Kurisaki A (2014) Biosynthesis of ribosomal RNA in nucleoli regulates pluripotency and differentiation ability of pluripotent stem cells. Stem Cells 32:3099–3111CrossRefGoogle Scholar
  37. Yan L, Jiang B, Li E, Wang X, Ling Q, Zheng D, Park JW, Chen X, Cheung E, Du X, Li Y, Cheng G, He E, Xu RH (2018) Scalable generation of mesenchymal stem cells from human embryonic stem cells in 3D. Int J Biol Sci 14:1196–1210CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of MedicineJilin UniversityChangchunChina
  2. 2.College of Clinical MedicineJilin UniversityChangchunChina
  3. 3.The First HospitalJilin UniversityChangchunChina
  4. 4.Institute of ImmunologyJilin UniversityChangchunChina

Personalised recommendations