Advertisement

Transplantation of stem cells from umbilical cord blood as therapy for type I diabetes

  • Rachel Stiner
  • Michael Alexander
  • Guangyang Liu
  • Wenbin Liao
  • Yongjun Liu
  • Jingxia Yu
  • Egest J. Pone
  • Weian Zhao
  • Jonathan R. T. LakeyEmail author
Review

Abstract

In recent years, human umbilical cord blood has emerged as a rich source of stem, stromal and immune cells for cell-based therapy. Among the stem cells from umbilical cord blood, CD45+ multipotent stem cells and CD90+ mesenchymal stem cells have the potential to treat type I diabetes mellitus (T1DM), to correct autoimmune dysfunction and replenish β-cell numbers and function. In this review, we compare the general characteristics of umbilical cord blood-derived multipotent stem cells (UCB-SCs) and umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) and introduce their applications in T1DM. Although there are some differences in surface marker expression between UCB-SCs and UCB-MSCs, the two cell types display similar functions such as suppressing function of stimulated lymphocytes and imparting differentiation potential to insulin-producing cells (IPCs) in the setting of low immunogenicity, thereby providing a promising and safe approach for T1DM therapy.

Keywords

Type 1 diabetes mellitus Umbilical cord blood Mesenchymal stem cells Multipotent stem cells Immunomodulation Insulin-producing cells 

Notes

Funding

This research was supported by the Juvenile Diabetes Research Foundation (Grant No. 17-2013-288), NIH (Grant No. 1DP2CA195763-01) and Juvenile Diabetes Research Foundation (Grant No. 17-2013-491).

References

  1. Abdi R, Moore R, Sakai S, Donnelly CB, Mounayar M, Sackstein R (2015) Hcell expression on murine MSC licenses pancreatotropism and confers durable reversal of autoimmune diabetes in nod mice. Stem Cells 33:1523–1531CrossRefGoogle Scholar
  2. Almici C, Carlo-Stella C, Wagner JE, Rizzoli V (1995) Umbilical cord blood as a source of hematopoietic stem cells: from research to clinical application. Haematologica 80:473–479Google Scholar
  3. Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383:69–82CrossRefGoogle Scholar
  4. Barachini S, Trombi L, Danti S, D’Alessandro D, Battolla B, Legitimo A, Nesti C, Mucci I, D’Acunto M, Cascone MG, Lazzeri L, Mattii L, Consolini R, Petrini M (2009) Morpho-functional characterization of human mesenchymal stem cells from umbilical cord blood for potential uses in regenerative medicine. Stem Cells Dev 18:293–305CrossRefGoogle Scholar
  5. Bhandari DR, Seo K-W, Sun B, Seo M-S, Kim H-S, Seo Y-J, Marcin J, Forraz N, Roy HL, Larry D, Colin M, Kang K-S (2011) The simplest method for in vitro β-cell production from human adult stem cells. Differentiation 82:144–152CrossRefGoogle Scholar
  6. Bieback K, Kern S, Klüter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634CrossRefGoogle Scholar
  7. Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464:1293–1300CrossRefGoogle Scholar
  8. Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, Arny M, Thomas L, Boyse EA (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A 86:3828–3832CrossRefGoogle Scholar
  9. Bruni A, Gala-Lopez B, Pepper AR, Abualhassan NS, Shapiro AJ (2014) Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab Syndr Obes 7:211–223Google Scholar
  10. Cai J, Wu Z, Xu X, Liao L, Chen J, Huang L, Wu W, Luo F, Wu C, Pugliese A, Pileggi A, Ricordi C, Tan J (2016) Umbilical cord mesenchymal stromal cell with autologous bone marrow cell transplantation in established type 1 diabetes: a pilot randomized controlled open-label clinical study to assess safety and impact on insulin secretion. Diabetes Care 39:149–157CrossRefGoogle Scholar
  11. Cappellesso-Fleury S, Puissant-Lubrano B, Apoil P-A, Titeux M, Winterton P, Casteilla L, Bourin P, Blancher A (2010) Human fibroblasts share immunosuppressive properties with bone marrow mesenchymal stem cells. J Clin Immunol 30:607–619CrossRefGoogle Scholar
  12. Chang J-W, Hung S-P, Wu H-H, Wu W-M, Yang A-H, Tsai H-L, Yang L-Y, Lee OK (2011) Therapeutic effects of umbilical cord blood-derived mesenchymal stem cell transplantation in experimental lupus nephritis. Cell Transplant 20:245–257CrossRefGoogle Scholar
  13. Chatenoud L, Warncke K, Ziegler A-G (2012) Clinical immunologic interventions for the treatment of type 1 diabetes. Cold Spring Harb Perspect Med 2Google Scholar
  14. Davies JE, Walker JT, Keating A (2017) Concise review: Wharton’s jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl Med 6:1620–1630CrossRefGoogle Scholar
  15. Delgado E, Perez-Basterrechea M, Suarez-Alvarez B, Zhou H, Revuelta EM, Garcia-Gala JM, Perez S, Alvarez-Viejo M, Menendez E, Lopez-Larrea C, Tang R, Zhu Z, Hu W, Moss T, Guindi E, Otero J, Zhao Y (2015) Modulation of autoimmune t-cell memory by stem cell educator therapy: phase 1/2 clinical trial. EBioMedicine 2:2024–2036CrossRefGoogle Scholar
  16. Denner L, Bodenburg Y, Zhao JG, Howe M, Cappo J, Tilton RG, Copland JA, Forraz N, McGuckin C, Urban R (2007) Directed engineering of umbilical cord blood stem cells to produce C-peptide and insulin. Cell Prolif 40:367–380CrossRefGoogle Scholar
  17. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317CrossRefGoogle Scholar
  18. Erices AA, Allers CI, Conget PA, Rojas CV, Minguell JJ (2003) Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodeficient mice after systemic infusion. Cell Transplant 12:555–561CrossRefGoogle Scholar
  19. Gao F, Wu D, Hu Y, Jin G (2008a) Extracellular matrix gel is necessary for in vitro cultivation of insulin producing cells from human umbilical cord blood derived mesenchymal stem cells. Chin Med J 121:811–818CrossRefGoogle Scholar
  20. Gao F, Wu D-Q, Hu Y-H, Jin G-X, Li G-D, Sun T-W, Li F-J (2008b) In vitro cultivation of islet-like cell clusters from human umbilical cord blood-derived mesenchymal stem cells. Transl Res 151:293–302CrossRefGoogle Scholar
  21. Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, Esperou H, Thierry D, Socie G, Lehn P (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321:1174–1178CrossRefGoogle Scholar
  22. Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA (2001) Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant 7:581–588CrossRefGoogle Scholar
  23. Haller MJ, Viener H-L, Wasserfall C, Brusko T, Atkinson MA, Schatz DA (2008) Autologous umbilical cord blood infusion for type 1 diabetes. Exp Hematol 36:710–715CrossRefGoogle Scholar
  24. Haller MJ, Wasserfall CH, Hulme MA, Cintron M, Brusko TM, McGrail KM, Sumrall TM, Wingard JR, Theriaque DW, Shuster JJ, Atkinson MA, Schatz DA (2011) Autologous umbilical cord blood transfusion in young children with type 1 diabetes fails to preserve C-peptide. Diabetes Care 34:2567–2569CrossRefGoogle Scholar
  25. He Y, Li H, Zhang F, Zhang G, Tang X, Zhu T, Huang N, Li X (2016) Immunotherapeutic effects of lymphocytes co-cultured with human cord blood-derived multipotent stem cells transplantation on APP/PS1 mice. Behav Brain Res 315:94–102CrossRefGoogle Scholar
  26. Hematti P, Kim J, Stein AP, Kaufman D (2013) Potential role of mesenchymal stromal cells in pancreatic islet transplantation. Transplant Rev (Orlando) 27:21–29CrossRefGoogle Scholar
  27. Hisanaga E, Park K-Y, Yamada S, Hashimoto H, Takeuchi T, Mori M, Seno M, Umezawa K, Takei I, Kojima I (2008) A simple method to induce differentiation of murine bone marrow mesenchymal cells to insulin-producing cells using conophylline and betacellulin-delta4. Endocr J 55:535–543CrossRefGoogle Scholar
  28. Hu Y-H, Wu D-Q, Gao F, Li G-D, Yao L, Zhang X-C (2009) A secretory function of human insulin-producing cells in vivo. HBPD Int 8:255–260Google Scholar
  29. Hu J, Yu X, Wang Z, Wang F, Wang L, Gao H, Chen Y, Zhao W, Jia Z, Yan S, Wang Y (2013) Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocr J 60:347–357CrossRefGoogle Scholar
  30. Hu J, Wang Y, Wang F, Wang L, Yu X, Sun R, Wang Z, Wang L, Gao H, Fu Z, Zhao W, Yan S (2015) Effect and mechanisms of human Wharton’s jelly-derived mesenchymal stem cells on type 1 diabetes in NOD model. Endocrine 48:124–134CrossRefGoogle Scholar
  31. Jaing T-H (2014) Umbilical cord blood: a trustworthy source of multipotent stem cells for regenerative medicine. Cell Transplant 23:493–496CrossRefGoogle Scholar
  32. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49CrossRefGoogle Scholar
  33. Jin HJ, Bae YK, Kim M, Kwon S-J, Jeon HB, Choi SJ, Kim SW, Yang YS, Oh W, Chang JW (2013) Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci 14:17986–18001CrossRefGoogle Scholar
  34. Jung J-A, Yoon Y-D, Lee H-W, Kang S-R, Han S-K (2018) Comparison of human umbilical cord blood-derived mesenchymal stem cells with healthy fibroblasts on wound-healing activity of diabetic fibroblasts. Int Wound J 15:133–139CrossRefGoogle Scholar
  35. Kang S-Y, Park D-E, Song W-J, Bae B-R, Lee J-W, Sohn K-H, Lee H-S, Kang H-R, Park H-W, Chang Y-S, Choi S-J, Oh W-I, Min K-U, Cho S-H (2017) Immunologic regulatory effects of human umbilical cord blood-derived mesenchymal stem cells in a murine ovalbumin asthma model. Clin Exp Allergy 47:937–945CrossRefGoogle Scholar
  36. Kebriaei P, Isola L, Bahceci E, Holland K, Rowley S, McGuirk J, Devetten M, Jansen J, Herzig R, Schuster M, Monroy R, Uberti J (2009) Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant 15:804–811CrossRefGoogle Scholar
  37. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301CrossRefGoogle Scholar
  38. Kim J-Y, Jeon HB, Yang YS, Oh W, Chang JW (2010) Application of human umbilical cord blood-derived mesenchymal stem cells in disease models. World J Stem Cells 2:34–38CrossRefGoogle Scholar
  39. Kim H-S, Shin T-H, Lee B-C, Yu K-R, Seo Y, Lee S, Seo M-S, Hong I-S, Choi SW, Seo K-W, Núñez G, Park J-H, Kang K-S (2013) Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2. Gastroenterology 145:1392–1403.e1–8CrossRefGoogle Scholar
  40. Kim H-S, Yun J-W, Shin T-H, Lee S-H, Lee B-C, Yu K-R, Seo Y, Lee S, Kang T-W, Choi SW, Seo K-W, Kang K-S (2015) Human umbilical cord blood mesenchymal stem cell-derived PGE2 and TGF-β1 alleviate atopic dermatitis by reducing mast cell degranulation. Stem Cells 33:1254–1266CrossRefGoogle Scholar
  41. Koblas T, Harman SM, Saudek F (2005) The application of umbilical cord blood cells in the treatment of diabetes mellitus. Rev Diabet Stud 2:228–234CrossRefGoogle Scholar
  42. Koblas T, Zacharovová K, Berková Z, Leontovic I, Dovolilová E, Zámecník L, Saudek F (2009) In vivo differentiation of human umbilical cord blood-derived cells into insulin-producing beta cells. Folia Biol (Praha) 55:224–232Google Scholar
  43. Kögler G, Sensken S, Wernet P (2006) Comparative generation and characterization of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood. Exp Hematol 34:1589–1595CrossRefGoogle Scholar
  44. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringdén O (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586CrossRefGoogle Scholar
  45. Lee C, Shim S, Jang H, Myung H, Lee J, Bae C-H, Myung JK, Kim M-J, Lee SB, Jang W-S, Lee S-J, Kim H-Y, Lee S-S, Park S (2017a) Human umbilical cord blood-derived mesenchymal stromal cells and small intestinal submucosa hydrogel composite promotes combined radiation-wound healing of mice. Cytotherapy 19:1048–1059CrossRefGoogle Scholar
  46. Lee YS, Sah SK, Lee JH, Seo K-W, Kang K-S, Kim T-Y (2017b) Human umbilical cord blood-derived mesenchymal stem cells ameliorate psoriasis-like skin inflammation in mice. Biochem Biophys Rep 9:281–288Google Scholar
  47. Li X, Li H, Bi J, Chen Y, Jain S, Zhao Y (2012) Human cord blood-derived multipotent stem cells (CB-SCs) treated with all-trans-retinoic acid (ATRA) give rise to dopamine neurons. Biochem Biophys Res Commun 419:110–116CrossRefGoogle Scholar
  48. Li X-Y, Zheng Z-H, Li X-Y, Guo J, Zhang Y, Li H, Wang Y-W, Ren J, Wu Z-B (2013) Treatment of foot disease in patients with type 2 diabetes mellitus using human umbilical cord blood mesenchymal stem cells: response and correction of immunological anomalies. Curr Pharm Des 19:4893–4899CrossRefGoogle Scholar
  49. Li Y, Yan B, Wang H, Li H, Li Q, Zhao D, Chen Y, Zhang Y, Li W, Zhang J, Wang S, Shen J, Li Y, Guindi E, Zhao Y (2015) Hair regrowth in alopecia areata patients following stem cell educator therapy. BMC Med 13:87CrossRefGoogle Scholar
  50. Li L, Hui H, Jia X, Zhang J, Liu Y, Xu Q, Zhu D (2016) Infusion with human bone marrow-derived mesenchymal stem cells improves β-cell function in patients and non-obese mice with severe diabetes. Sci Rep 6:37894CrossRefGoogle Scholar
  51. Mabed M (2011) The potential utility of bone marrow or umbilical cord blood transplantation for the treatment of type I diabetes mellitus. Biol Blood Marrow Transplant 17:455–464CrossRefGoogle Scholar
  52. Markov V, Kusumi K, Tadesse MG, William DA, Hall DM, Lounev V, Carlton A, Leonard J, Cohen RI, Rappaport EF, Saitta B (2007) Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles. Stem Cells Dev 16:53–73CrossRefGoogle Scholar
  53. Montanucci P, Alunno A, Basta G, Bistoni O, Pescara T, Caterbi S, Pennoni I, Bini V, Gerli R, Calafiore R (2016) Restoration of t cell substes of patients with type 1 diabetes mellitus by microencapsulated human umbilical cord Wharton jelly-derived mesenchymal stem cells: an in vitro study. Clin Immunol 163:34–41CrossRefGoogle Scholar
  54. Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K i, Eguchi H, Onitsuka I, Matsui K, Imaizumi T (2000) Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 105:1527–1536CrossRefGoogle Scholar
  55. Oh W, Kim D-S, Yang YS, Lee JK (2008) Immunological properties of umbilical cord blood-derived mesenchymal stromal cells. Cell Immunol 251:116–123CrossRefGoogle Scholar
  56. Park JH, Hwang I, Hwang SH, Han H, Ha H (2012) Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine action. Diabetes Res Clin Pract 98:465–473CrossRefGoogle Scholar
  57. Phuc PV, Nhung TH, Loan DTT, Chung DC, Ngoc PK (2011) Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells. In Vitro Cell Dev Biol Anim 47:54–63CrossRefGoogle Scholar
  58. Prabakar KR, Domínguez-Bendala J, Molano RD, Pileggi A, Villate S, Ricordi C, Inverardi L (2012) Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells. Cell Transplant 21:1321–1339CrossRefGoogle Scholar
  59. Reddi AS, Kuppasani K, Ende N (2010) Human umbilical cord blood as an emerging stem cell therapy for diabetes mellitus. Curr Stem Cell Res Ther 5:356–361CrossRefGoogle Scholar
  60. Reddi AS, Kothari N, Kuppasani K, Ende N (2015) Human umbilical cord blood cells and diabetes mellitus: recent advances. Curr Stem Cell Res Ther 10:266–270CrossRefGoogle Scholar
  61. Sahraneshin Samani F, Ebrahimi M, Zandieh T, Khoshchehreh R, Baghaban Eslaminejad M, Aghdami N, Baharvand H (2015) In vitro differentiation of human umbilical cord blood CD133(+)cells into insulin producing cells in co-culture with rat pancreatic mesenchymal stem cells. Cell J 17:211–220Google Scholar
  62. Salazar KD, Lankford SM, Brody AR (2009) Mesenchymal stem cells produce Wnt isoforms and TGF-beta1 that mediate proliferation and procollagen expression by lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 297:L1002–L1011CrossRefGoogle Scholar
  63. Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, Muroi K, Ozawa K (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109:228–234CrossRefGoogle Scholar
  64. Secco M, Moreira YB, Zucconi E, Vieira NM, Jazedje T, Muotri AR, Okamoto OK, Verjovski-Almeida S, Zatz M (2009) Gene expression profile of mesenchymal stem cells from paired umbilical cord units: cord is different from blood. Stem Cell Rev 5:387–401CrossRefGoogle Scholar
  65. Shin T-H, Kim H-S, Kang T-W, Lee B-C, Lee H-Y, Kim Y-J, Shin J-H, Seo Y, Won Choi S, Lee S, Shin K, Seo K-W, Kang K-S (2016) Human umbilical cord blood-stem cells direct macrophage polarization and block inflammasome activation to alleviate rheumatoid arthritis. Cell Death Dis 7:e2524CrossRefGoogle Scholar
  66. Sordi V, Pellegrini S, Krampera M, Marchetti P, Pessina A, Ciardelli G, Fadini G, Pintus C, Pantè G, Piemonti L (2017) Stem cells to restore insulin production and cure diabetes. Nutr Metab Cardiovasc Dis 27:583–600CrossRefGoogle Scholar
  67. Sun L, Wang D, Liang J, Zhang H, Feng X, Wang H, Hua B, Liu B, Ye S, Hu X, Xu W, Zeng X, Hou Y, Gilkeson GS, Silver RM, Lu L, Shi S (2010) Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 62:2467–2475CrossRefGoogle Scholar
  68. Sun B, Liu R, Xiao Z-D (2015) Induction of insulin-producing cells from umbilical cord blood-derived stromal cells by activation of the c-met/HGF axis. Develop Growth Differ 57:353–361CrossRefGoogle Scholar
  69. Van Pham P, Thi-My Nguyen P, Thai-Quynh Nguyen A, Minh Pham V, Nguyen-Tu Bui A, Thi-Tung Dang L, Gia Nguyen K, Kim Phan N (2014) Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells by PDX-1 mRNA transfection. Differentiation 87:200–208CrossRefGoogle Scholar
  70. von Bonin M, Stölzel F, Goedecke A, Richter K, Wuschek N, Hölig K, Platzbecker U, Illmer T, Schaich M, Schetelig J, Kiani A, Ordemann R, Ehninger G, Schmitz M, Bornhäuser M (2009) Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant 43:245–251CrossRefGoogle Scholar
  71. Wang M, Yang Y, Yang D, Luo F, Liang W, Guo S, Xu J (2009) The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology 126:220–232CrossRefGoogle Scholar
  72. Wang L, Wang L, Cong X, Liu G, Zhou J, Bai B, Li Y, Bai W, Li M, Ji H, Zhu D, Wu M, Liu Y (2013) Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem Cells Dev 22:3192–3202CrossRefGoogle Scholar
  73. Wang D, Li J, Zhang Y, Zhang M, Chen J, Li X, Hu X, Jiang S, Shi S, Sun L (2014) Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study. Arthritis Res Ther 16:R79CrossRefGoogle Scholar
  74. Willcox A, Gillespie KM (2016) Histology of type 1 diabetes pancreas. Methods Mol Biol 1433:105–117CrossRefGoogle Scholar
  75. Wu K-H, Chan C-K, Tsai C, Chang Y-H, Sieber M, Chiu T-H, Ho M, Peng C-T, Wu H-P, Huang J-L (2011) Effective treatment of severe steroid-resistant acute graft-versus-host disease with umbilical cord-derived mesenchymal stem cells. Transplantation 91:1412–1416CrossRefGoogle Scholar
  76. Xv J, Ming Q, Wang X, Zhang W, Li Z, Wang S, Li Y, Li L (2017) Mesenchymal stem cells moderate immune response of type 1 diabetes. Cell Tissue Res 368:239–248CrossRefGoogle Scholar
  77. Yoshida S, Ishikawa F, Kawano N, Shimoda K, Nagafuchi S, Shimoda S, Yasukawa M, Kanemaru T, Ishibashi H, Shultz LD, Harada M (2005) Human cord blood-derived cells generate insulin-producing cells in vivo. Stem Cells 23:1409–1416CrossRefGoogle Scholar
  78. Zhao Y (2012) Stem cell educator therapy and induction of immune balance. Curr Diab Rep 12:517–523CrossRefGoogle Scholar
  79. Zhao Y, Mazzone T (2010) Human cord blood stem cells and the journey to a cure for type 1 diabetes. Autoimmun Rev 10:103–107CrossRefGoogle Scholar
  80. Zhao Y, Wang H, Mazzone T (2006) Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp Cell Res 312:2454–2464CrossRefGoogle Scholar
  81. Zhao Y, Huang Z, Qi M, Lazzarini P, Mazzone T (2007) Immune regulation of T lymphocyte by a newly characterized human umbilical cord blood stem cell. Immunol Lett 108:78–87CrossRefGoogle Scholar
  82. Zhao Y, Lin B, Darflinger R, Zhang Y, Holterman MJ, Skidgel RA (2009) Human cord blood stem cell-modulated regulatory T lymphocytes reverse the autoimmune-caused type 1 diabetes in nonobese diabetic (NOD) mice. PLoS One 4:e4226CrossRefGoogle Scholar
  83. Zhao Y, Lin B, Dingeldein M, Guo C, Hwang D, Holterman MJ (2010) New type of human blood stem cell: a double-edged sword for the treatment of type 1 diabetes. Transl Res 155:211–216CrossRefGoogle Scholar
  84. Zhao Y, Jiang Z, Zhao T, Ye M, Hu C, Yin Z, Li H, Zhang Y, Diao Y, Li Y, Chen Y, Sun X, Fisk MB, Skidgel R, Holterman M, Prabhakar B, Mazzone T (2012) Reversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cells. BMC Med 10(3)Google Scholar
  85. Zhao Q-S, Xia N, Zhao N, Li M, Bi C-L, Zhu Q, Qiao G-F, Cheng Z-F (2013a) Localization of human mesenchymal stem cells from umbilical cord blood and their role in repair of diabetic foot ulcers in rats. Int J Biol Sci 10:80–89CrossRefGoogle Scholar
  86. Zhao Y, Jiang Z, Zhao T, Ye M, Hu C, Zhou H, Yin Z, Chen Y, Zhang Y, Wang S, Shen J, Thaker H, Jain S, Li Y, Diao Y, Chen Y, Sun X, Fisk MB, Li H (2013b) Targeting insulin resistance in type 2 diabetes via immune modulation of cord blood-derived multipotent stem cells (CB-SCs) in stem cell educator therapy: phase I/II clinical trial. BMC Med 11:160CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rachel Stiner
    • 1
    • 2
  • Michael Alexander
    • 1
    • 2
    • 3
  • Guangyang Liu
    • 1
    • 2
    • 3
    • 4
  • Wenbin Liao
    • 4
  • Yongjun Liu
    • 1
    • 3
    • 4
    • 5
  • Jingxia Yu
    • 1
    • 2
    • 3
    • 4
  • Egest J. Pone
    • 1
    • 3
    • 5
    • 6
    • 7
  • Weian Zhao
    • 1
    • 3
    • 4
    • 5
    • 6
    • 7
  • Jonathan R. T. Lakey
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Sue and Bill Gross Stem Cell Research CenterUniversity of California, IrvineIrvineUSA
  2. 2.Department of SurgeryUniversity of California, IrvineOrangeUSA
  3. 3.Department of Biomedical EngineeringUniversity of California, IrvineIrvineUSA
  4. 4.Baylx, Inc.Lake ForestUSA
  5. 5.Department of Pharmaceutical SciencesUniversity of California, IrvineIrvineUSA
  6. 6.Chao Family Comprehensive Cancer CenterUniversity of California, IrvineOrangeUSA
  7. 7.Department of Biological ChemistryUniversity of California, IrvineIrvineUSA

Personalised recommendations