Advertisement

Cell and Tissue Research

, Volume 375, Issue 2, pp 507–529 | Cite as

The subcommissural organ and the Reissner fiber: old friends revisited

  • Rosa I. Muñoz
  • Thilo Kähne
  • Hernán Herrera
  • Sara Rodríguez
  • Ma. Montserrat Guerra
  • Karin Vío
  • René Hennig
  • Erdmann Rapp
  • Esteban RodríguezEmail author
Regular Article
  • 516 Downloads

Abstract

The subcommissural organ (SCO) is an ancient and conserved brain gland secreting into cerebrospinal fluid (CSF) glycoproteins that form the Reissner fiber (RF). The present investigation was designed to further investigate the dynamic of the biosynthetic process of RF glycoproteins prior and after their release into the CSF, to identify the RF proteome and N-glycome and to clarify the mechanism of assembly of RF glycoproteins. Various methodological approaches were used: biosynthetic labelling injecting 35S-cysteine and 3H-galactose into the CSF, injection of antibodies against galectin-1 into the cerebrospinal fluid, light and electron microscopical methods; isolated bovine RF was used for proteome analyses by mass spectrometry and glycome analysis by xCGE-LIF. The biosynthetic labelling study further supported that a small pool of SCO-spondin molecules rapidly enter the secretory pathways after its synthesis, while most of the SCO-spondin molecules are stored in the rough endoplasmic reticulum for hours or days before entering the secretory pathway and being released to assemble into RF. The proteomic analysis of RF revealed clusterin and galectin-1 as partners of SCO-spondin; the in vivo use of anti-galectin-1 showed that this lectin is essential for the assembly of RF. Galectin-1 is not secreted by the SCO but evidence was obtained that it would be secreted by multiciliated ependymal cells lying close to the SCO. Further, a surprising variety and complexity of glycan structures were identified in the RF N-glycome that further expands the potential functions of RF to a level not previously envisaged. A model of the macromolecular organization of Reissner fiber is proposed.

Keywords

Subcommissural organ SCO-spondin Galectin-1 Clusterin Reissner fiber assembly Biosynthetic labelling Mass spectrometry Immunoblockage Immunocytochemistry N-glycome 

Abbreviations

AFRU

Antisera raised in rabbits against isolated bovine fiber of Reissner dissolved in urea

CSF

Cerebrospinal fluid

Gal-1

Galectin-1

RER

Rough endoplasmic reticulum

RF

Reissner fiber

SA

Aqueduct of Sylvius

SCO

Subcommissural organ

Notes

Acknowledgements

The authors wish to acknowledge FRIVAL Ltda. (Valdivia) and the valuable technical support of Mr. Genaro Alvial and Yvonne Ducho and the Confocal and Electron Microscopy Core Facilities of Universidad Austral de Chile. The study was supported by Fondecyt 1000435, 1070241 and 1111018 to EMR.

References

  1. Afzelius BA, Olsson R (1957) The fine structure of the subcommissural organ cells and Reissner’s fibre in Myxine. Z Zellforsch Mikrosk Anat 46:672–685Google Scholar
  2. Akazawa C, Nakamura Y, Sango K, Horie H, Kohsaka S (2004) Distribution of the galectin-1 mRNA in the rat nervous system: its transient upregulation in rat facial motor neurons after facial nerve axotomy. Neuroscience 125:171–178Google Scholar
  3. Attila U, Talanti S (1973) Incorporation of 35 S-labelled cysteine in the subcommissural organ of the rat after adrenalectomy and after treatment with hydrocortisone. Acta Physiol Scand 87:422–424Google Scholar
  4. Bulleid NJ (2012) Disulfide bond formation in the mammalian endoplasmic reticulum. Cold Spring Harb Perspect Biol 4:a013219Google Scholar
  5. Burman J, Svenningsson A (2016) Cerebrospinal fluid concentration of Galectin-9 is increased in secondary progressive multiple sclerosis. J Neuroimmunol 292:40–44Google Scholar
  6. Camby I, Le Mercier M, Lefranc F, Kiss R (2006) Galectin-1: a small protein with major functions. Glycobiology 16:137R–157RGoogle Scholar
  7. Caprile T, Hein S, Rodríguez S, Montecinos H, Rodríguez EM (2003) Reissner fiber binds and transports away monoamines present in the cerebrospinal fluid. Brain Res Mol Brain Res 110:177–192Google Scholar
  8. Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM (2008) GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res 7:1650–1659.  https://doi.org/10.1021/pr7008252 Google Scholar
  9. Cifuentes M, Rodríguez S, Pérez J, Grondona JM, Rodríguez EM, Fernández-Llebrez P (1994) Decreased cerebrospinal fluid flow through the central canal of the spinal cord of rats immunologically deprived of Reissner’s fibre. Exp Brain Res 98:431–440Google Scholar
  10. Creveaux I, Gobron S, Meiniel R, Dastugue B, Meiniel A (1998) Complex expression pattern of the SCO-spondin gene in the bovine subcommissural organ: toward an explanation for Reissner's fiber complexity? Brain Res Mol Brain Res 55:45–53Google Scholar
  11. Diederen JHB, Vullings HGB (1993) Dynamic aspects of the secretory process in the amphibian subcommissural organ. In: Oksche A, Rodríguez EM, Fernández-Llebrez P (eds) The subcommissural organ. Springer, Berlin, pp 111–119Google Scholar
  12. Diederen JHB, Vullings HGB, Legerstee-Oostveen GG (1987) Autoradiographic study of the production of secretory material by the subcommissural organ of frogs (Rana temporaria) after injection of several radioactive precursors, with special reference to the glycosilation and turnover rate of the secretory material. Cell Tissue Res 248:215–222Google Scholar
  13. Dumont D, Noben JP, Raus J, Stinissen P, Robben J (2004) Proteomic analysis of cerebrospinal fluid from multiple sclerosis patients. Proteomics 4:2117–2124Google Scholar
  14. Earl LA, Bi S, Baum LG (2011) Galectin multimerization and lattice formation are regulated by linker region structure. Glycobiology 21:6–12Google Scholar
  15. Elola MT, Chiesa ME, Fernández Alberti A, Mordoh J, Fink NE (2005) Galectin-1 receptors in different cell types. J Biomed Sci 12:13–29.  https://doi.org/10.1007/s11373-004-8169-5 Google Scholar
  16. Ermisch A (1973) Zur Charakterisierung des Komplexes Subcommisuralorgan-Reissnerschen Faden und seiner Beziehung zum Liquor unter besonderer Berücksichtigung autoradiographischer Untersuchungen sowie funktioneller Aspekte. Wiss Z Karl-Marx-Univ Leipzig Mat Naturwiss R 22:297–336Google Scholar
  17. Ermisch A, Sterba G, Hartmann G, Freyer K (1968) Autoradiographische Untersuchungen über das Wachstum des Reissnerschen Fadens von Cyprinus carpio (L.). Z Zellforsch Mikrosk Anat 91:220–235Google Scholar
  18. Ermisch A, Sterba G, Hess J (1970) Untersuchungen zur Klärung der Funktion des Reissnerschen Fadens. In-vitro-Bindung von Noradrenalin, Adrenalin und Serotonin. Experientia 26:1319–1321Google Scholar
  19. Ermisch A, Sterba G, Mueller A, Hess J (1971) Autoradiographische Untersuchungen am Subcommissuralorgan und dem Reissnerschen Faden. I. Organsekretion und Parameter der Organleistung als Grundlagen zur Beurteilung der Organfunktion. Acta Zool 52:1–21Google Scholar
  20. Feige MJ, Hendershot LM (2011) Disulfide bonds in ER protein folding and homeostasis. Curr Opin Cell Biol 23:167–175.  https://doi.org/10.1016/j.ceb.2010.10.012
  21. Gobron S, Monnerie H, Meiniel R, Creveaux I, Lehmann W, Lamalle D, Dastugue B, Meiniel A (1996) SCO-spondin: a new member of the thrombospondin family secreted by the subcommissural organ is a candidate in the modulation of neuronal aggregation. J Cell Sci 109:1053–1061Google Scholar
  22. Gobron S, Creveaux I, Meiniel R, Didier R, Dastugue B, Meiniel A (1999) Sco-spondin is evolutionarily conserved in the central nervous system of the chordate phylum. Neuroscience 88:655–664Google Scholar
  23. Gobron S, Creveaux I, Meiniel R, Didier R, Herbet A, Bambdad M, El Bitar F, Dastugue B, Meiniel A (2000) Subcommissural organ/Reissner's fibre complex: characterization of SCO-spondin a glycoprotein with potent activity on neurite outgrowth. Glia 32:177–191Google Scholar
  24. Haeseleer F, Palczewski K (2002) Calmodulin and Ca2+-binding proteins (CaBPs): variations on a theme. Adv Exp Med Biol 514:303–317Google Scholar
  25. He XW, Li WL Li C, Liu P, Shen YG, Zhu M, Jin XP (2017) Serum levels of galectin-1, galectin-3, and galectin-9 are associated with large artery atherosclerotic stroke. Sci Rep.  https://doi.org/10.1038/srep40994
  26. Heizmann CW, Cox JA (1998) New perspectives on S100 proteins: a multi-functional Ca(2+)-, Zn(2+)- and Cu(2+)-binding protein family. Biometals 11:383–397Google Scholar
  27. Helm C, Karl A, Beckers P, Kaul-Strehlow S, Ulbricht E, Kourtesis I, Kuhrt H, Hausen H, Bartolomaeus T, Reichenbach A, Bleidorn C (2017) Early evolution of radial glial cells in Bilateria. Proc R Soc B 284(20170743).  https://doi.org/10.1098/rspb.2017.0743
  28. Hennig R, Cajic S, Borowiak M, Hoffmann M, Kottler R, Reichl U, Rapp E (2016) Towards personalized diagnostics via longitudinal study of the human plasma N-glycome. Biochim Biophys Acta 1860:1728–1738Google Scholar
  29. Herrera H, Rodríguez EM (1990) Secretory glycoproteins of the rat subcommissural organ are N-linked complex-type glycoproteins. Demonstration by combined use of lectins and specific glycosidases, and by administration of Tunicamycin. Histochem 93:607–615Google Scholar
  30. Hess J, Sterba G (1973) Studies concerning the function of the complex subcommissural organ-liquor fibre: the binding ability of the liquor fibre to pyrocatechin derivatives and its functional aspects. Brain Res 58:303–312Google Scholar
  31. Hogg PJ (2003) Disulfide bonds as switches for protein function. Trends Biochem Sci.  https://doi.org/10.1016/S0968-0004(03)00057-4
  32. Hoheisel G, Sterba G, Ermisch A (1971) Feinstruktur des isolierten Reissnerschen Fadens vom Rind. J Hirnforsch 13:33–38Google Scholar
  33. Hoyo-Becerra C, López-Avalos MD, Alcaide-Gavilán M, Gómez-Roldán MC, Pérez J, FernándezLlebrez P, Grondona JM (2005) Reissner’s fiber formation depends on developmentally regulated factors extrinsic to the subcommissural organ. Cell Tissue Res 321:429–441Google Scholar
  34. Irigoin C, Rodríguez EM, Heinrichs M, Frese K, Herzog S, Oksche A, Rott R (1990) Immunocytochemical study of the subcommissural organ of rats with induced postnatal hydrocephalus. Exp Brain Res 82:384–392Google Scholar
  35. Jenne DD, Tschopp J (1992) Clusterin: the intriguing guises of a widely expressed glycoprotein. Trends Biochem Sci 17:154–159Google Scholar
  36. Kähne T, Richter S, Kolodziej A, Smalla KH, Pielot R, Engler A, Ohl FW, Dieterich DC, Seidenbecher C, Tischmeyer W, Naumann M, Gundelfinger ED (2006) Proteome rearrangements after auditory learning: high-resolution profiling of synapse-enriched protein fractions from mouse brain. J Neurochem 138:124–138Google Scholar
  37. Kawashima T, Kawashima S, Tanaka C, Murai M, Yoneda M, Putnam NH, Rokhsar DS, Kanehisa M, Satoh N, Wada H (2009) Domain shuffling and the evolution of vertebrates. Genome Res 19:1393–1403Google Scholar
  38. Kohno K (1969) Electron microscopic studies on Reissner’s fiber and the ependymal cells in the spinal cord of the rat. Z Zellforsch Mikrosk Anat 94:565–573Google Scholar
  39. Leatherland JF, Dodd JM (1968) Studies on the structure,ultrastructure and function of the subcommissural organ-Reissner’s fibre complex of the European eel Anguilla anguilla L. Z Zellforsch Mikros Anat 89:533–549Google Scholar
  40. Leppänen A, Stowell S, Blixt O, Cummings RD (2005) Dimeric galectin-1 binds with high affinity to α2,3-sialylated and non-sialylated terminal n-acetyllactosamine units on surface-bound extended glycans. J Biol Chem 280:5549–5562.  https://doi.org/10.1074/jbc.M412019200 Google Scholar
  41. Meiniel R, Meiniel A (1985) Analysis of the secretions of the subcommissural organs of several vertebrate species by use of fluorescent lectins. Cell Tissue Res 239:359–364Google Scholar
  42. Meiniel A, Molet JL, Meiniel R (1988) Complex-type glycoproteins synthesized in the subcommissural organ of mammals. Light- and electron-microscopic investigations by use of lectins. Cell Tissue Res 253:383–395Google Scholar
  43. Meiniel R, Molat JL, Duchier-Liris N, Meiniel A (1990) Ontogenesis of the secretory epithelium of the bovine subcommissural organ. A histofluorescence study using lectins and monoclonal antibodies. Brain Res Dev Brain Res 55:171–180Google Scholar
  44. Meiniel O, Meiniel R, Lalloué F, Didier R, Jauberteau MO, Meiniel A, Petit D (2008) The lengthening of a giant protein: when, how, and why? J Mol Evol 66:1–10Google Scholar
  45. Moiseeva EP, Javed Q, Spring EL, de Bono DP (2000) Galectin 1 is involved in vascular smooth muscle cell proliferation. Cardiovasc Res 45:493–502Google Scholar
  46. Müller H, Sterba G (1965) Elektronenmikroskopische Untersuchungen des Subkommissuralorganes von Lampreta planeri (Bloch). Verh Dtsch Zool Ges Jena,Zool Anz Suppl 23:441–453Google Scholar
  47. Naumann W (1968) Histochemische Untersuchungen am Subkommissuralorgan und Reissnerschen Faden von Lampreta planeri (Bloch). Z Zellforsch Mikrosk Anat 87:572–591Google Scholar
  48. Nicholls GE (1913) The structure and development of Reissner’s fibre and sub-commissural organ. Part 1. Q J Microsc Sci 58(part 1):1–116Google Scholar
  49. Nualart F, Hein S (2001) Biosynthesis and molecular biology of the secretory proteins of the subcommissural organ. Microsc Res Tech 52:468–483Google Scholar
  50. Nualart F, Rodríguez EM (1996) Immunochemical analysis of the subcommissural organ-Reissner’s fiber complex using antibodies against alkylated and deglycosylated bovine Reissner's fiber glycoproteins. Cell Tissue Res 286:23–31Google Scholar
  51. Nualart F, Hein S, Rodríguez EM, Oksche A (1991) Identification and partial characterization of the secretory glycoproteins of the bovine subcommissural organ-Reissner's fiber complex. Evidence for the existence of two precursor forms. Brain Res Mol Brain Res 11:227–238Google Scholar
  52. Nualart F, Hein S, Yulis CR, Zárraga AM, Araya A, Rodríguez EM (1998) Partial sequencing of Reissner's fiber glycoprotein I (RF-Gly I). Cell Tissue Res 292:239–250Google Scholar
  53. Oksche A (1961) Vergleichende Untersuchungen über die sekretorische Aktivität des Subkommissuralorgans und den Gliacharakter seiner Zellen. Z Zellforsch Mikrosk Anat 54:549–612Google Scholar
  54. Oksche A (1969) The Subcommissural Organ. J Neuro Visc Rel Suppl. IX:111–139Google Scholar
  55. Oksche A, Rodríguez EM, Fernández-Llebrez P (1993) The subcommissural organ. Springer, Berlin, pp 41–49Google Scholar
  56. Olsson R (1955) Structure and development of Reissner’s fibre in the caudal end of amphioxus and some lower vertebrates. Acta Zool (Stockh) 36:167–198Google Scholar
  57. Olsson R (1958) Studies on the subcommissural organ. Acta Zool (Stockh) 39:71–102Google Scholar
  58. Olsson R (1972) Reissner’s fiber in ascidian tadpole larvae. Acta Zool (Stockh) 53:17–21Google Scholar
  59. Olsson R (1993) Reissner’s fiber mechanisms: some common denominators. In: Oksche A, Rodríguez EM, Fernández-Llebrez P (eds) The subcommissural organ. Springer, Berlin, pp 33–39Google Scholar
  60. Olsson R, Wingstrand KG (1954) Reissner’s fibre and the infundibular organ in amphioxus. Results obtained with Gomori’s chrome alum haematoxylin. Univ Bergen Arbok (Publ Biol Stat) 14:1–14Google Scholar
  61. Olsson R, Yulis CR, Rodríguez EM (1994) The infundibular organ of the lancelet (Branchiostoma lanceolatum, Acrania): an immunocytochemical study. Cell Tissue Res 277:107–114Google Scholar
  62. Ortloff AR, Vío K, Guerra M, Jaramillo K, Kaehne T, Jones H, McAllister JP, Rodríguez EM (2013) Role of the subcommissural organ in the pathogenesis of congenital hydrocephalus in the HTx rat. Cell Tissue Res 352:707–725Google Scholar
  63. Patnaik SK, Potvin B, Carlsson S, Sturm D, Leffler H, Stanley P (2005) Complex N-glycans are the major ligands for galectin-1, -3, and -8 on Chinese hamster ovary cells. Glycobiology 16:305–317Google Scholar
  64. Peruzzo B, Rodríguez S, Delannoy L, Hein S, Rodríguez EM (1987) Ultrastructural immunocytochemical study of the massa caudalis of lamprey larvae (Geotria australis). Evidence for the vascular fate of Reissner’s fiber material. Cell Tissue Res 247:367–376Google Scholar
  65. Rodríguez EM (1969) Fixation of the central nervous system by perfusion of the cerebral ventricles with a threefold aldehyde mixture. Brain Res 15:395–412Google Scholar
  66. Rodríguez EM (1970) Ependymal specializations. II. Ultrastructural aspects of the apical secretion of the toad subcommissural organ. Z Zellforsch Mikrosk Anat 111:15–31Google Scholar
  67. Rodríguez S, Caprile T (2001) Functional aspects of the subcommissural organ-Reissner’s fiber complex with emphasis in the clearance of brain monoamines. Microsc Res Tech 52:564–572Google Scholar
  68. Rodríguez EM, Oksche A (1993) Historical landmarks in the investigations of the subcommissural organ and Reissner’s fiber. In: Oksche A, Rodríguez EM, Fernández-Llebrez P (eds) The subcommissural organ. Springer, Berlin, pp 9–19Google Scholar
  69. Rodríguez EM, Oksche A, Hein S, Rodríguez S, Yulis R (1984a) Comparative immunocytochemical study of the subcommissural organ. Cell Tissue Res 237:427–441Google Scholar
  70. Rodriguez EM, Yulis CR, Peruzzo B, Alvial G, Andrade R (1984b) Standardization and silver methenamine for light and electron microscopy immunocytochemistry. Histochemistry 81:253–263Google Scholar
  71. Rodríguez EM, Herrera H, Peruzzo B, Rodríguez S, Hein S, Oksche A (1986) Light- and electron microscopic immunocytochemistry and lectin histochemistry of the subcommissural organ: evidence for processing of the secretory material. Cell Tissue Res 243:545–559Google Scholar
  72. Rodríguez EM, Oksche A, Rodríguez S, Hein S, Peruzzo B, Schoebitz K, Herrera H (1987a) The subcommissural organ and Reissner’s fiber. In: Gross PM (ed) Circumventricular organs and body fluids, vol. II. CRC Press, Boca Raton, pp 3–41Google Scholar
  73. Rodríguez S, Rodríguez PA, Banse C, Rodríguez EM, Oksche A (1987b) Reissner’s fiber, massa caudalis and ampulla caudalis in the spinal cord of lamprey larvae (Geotria australis). Cell Tissue Res 247:359–366Google Scholar
  74. Rodríguez EM, Hein S, Rodríguez S, Herrera H, Peruzzo B, Nualart F, Oksche A (1987c) Analysis of the secretory products of the subcommissural organ. In: Scharrer B, Korf HW, Hartwig HG (eds) Functional morphology of neuroendocrine systems. Springer, Berlin, pp 9–22Google Scholar
  75. Rodríguez EM, Rodríguez S, Schoebitz K, Yulis CR, Hoffmann P, Manns V, Oksche A (1989) Light- and electron-microscopic investigation of the rat subcommissural organ grafted under the kidney capsule, with particular reference to immunocytochemistry and lectin histochemistry. Cell Tissue Res 258:499–514Google Scholar
  76. Rodríguez S, Rodríguez EM, Jara P, Peruzzo B, Oksche A (1990) Single injection into the cerebrospinal fluid of antibodies against the secretory material of the subcommissural organ reversibly blocks formation of Reissner’s fiber: immunocytochemical investigations in the rat. Exp Brain Res 81:113–124Google Scholar
  77. Rodríguez EM, Oksche A, Hein S, Yulis CR (1992) Cell biology of the subcommissural organ. Int Rev Cytol 135:39–121Google Scholar
  78. Rodríguez EM, del Brío León MA, Riera P, Menendez J, Schoebitz K (1996) The floor plate of the hindbrain is a highly specialized gland. Immunocytochemical and ultrastructural characteristics. Brain Res Dev Brain Res 97:153–168Google Scholar
  79. Rodríguez EM, Rodríguez S, Hein S (1998) The subcommissural organ. Microsc Res Tech 41:98–123Google Scholar
  80. Rodríguez S, Navarrete EH, Vío K, González C, Schöbitz K, Rodríguez EM (1999a) Isograft and xenograft of the subcommissural organ into the lateral ventricle of the rat and the formation of Reissner’s fiber. Cell Tissue Res 296:457–469Google Scholar
  81. Rodríguez S, Vio K, Wagner C, Barría M, Navarrete EH, Ramírez VD, Pérez-Fígares JM, Rodríguez EM (1999b) Changes in the cerebrospinal-fluid monoamines in rats with an immunoneutralization of the subcommissural organ-Reissner’s fiber complex by maternal delivery of antibodies. Exp Brain Res 128:278–290Google Scholar
  82. Rodríguez EM, Oksche A, Montecinos H (2001) Human subcommissural organ, with particular emphasis on its secretory activity during the fetal life. Microsc Res Tech 52:573–590Google Scholar
  83. Ruhaak LR, Hennig R, Huhn C, Borowiak M, Dolhain RJEM, Deelder AM, Rapp E, Wuhrer M (2010) Optimized workflow for preparation of APTS-labeled N-glycans allowing high-throughput analysis of human plasma glycomes using 48-channel multiplexed CGE-LIF. J Proteome Res 9:6655–6664Google Scholar
  84. Sango K, Tokashiki A, Ajiki K, Horie M, Kawano H, Watabe K, Horie H, Kadoya T (2004) Synthesis, localization and externalization of galectin-1 in mature dorsal root ganglion neurons and Schwann cells. Eur J Neurosci 19:55–64Google Scholar
  85. Schlattner U, Klaus A, Ramirez Rios S, Guzun R, Kay L, Tokarska-Schlattner M (2016) Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites. Amino Acids 48:1751–1774Google Scholar
  86. Schöbitz K, Garrido O, Heinrichs M, Speer L, Rodríguez EM (1986) Ontogenetical development of the chick and duck subcommissural organ. An immunocytochemical study. Histochemistry 84:31–41Google Scholar
  87. Schöbitz K, Rodríguez EM, Garrido O, Del Brío León MA (1993) Ontogenetic development of the subcommissural organ with reference to the flexural organ. In: Oksche A, Rodríguez EM, Fernández-Llebrez P (eds) The Subcommissural Organ. Springer, Berlin Heidelberg New York, pp 41–49Google Scholar
  88. Schöbitz K, González C, Peruzzo B, Yulis C, Rodríguez EM (2001) Organ culture of the bovine subcommissural organ. Evidence for synthesis and release of the secretory material. Microsc Res Tech 52:496–509Google Scholar
  89. Stanka P, Schwink A, Wetzstein R (1964) Elektronenmikroskopische Untersuchungen des Subcommissuralorgans der Ratte. Z Zellforsch Mikrosk Anat 63:277–301Google Scholar
  90. Sterba G (1962) Das Subcommissuralorgan von Lampetra planeri (Bloch). Zool Jahrb Anat 80:135–158Google Scholar
  91. Sterba G (1964) Grundlage des histochemischen und biochemischen Nachweises von Neurosekret (Trägerprotein der Oxytocine) mit Pseudoisozyanin. Acta Histochem (Jena) 17:268–292Google Scholar
  92. Sterba G (1966) Zur cerebrospinalen Neurokrinie der Wirbeltiere. Zool Anz Suppl 29:393–440Google Scholar
  93. Sterba G (1969) Morphologie und Funktion des Subcommissuralorgans. In: Sterba G (ed) Zirkumventriculare Organe und Liquor. G Fischer, Jena, pp 17–27Google Scholar
  94. Sterba G, Naumann W (1966) Elektronenmikroskopische Untersuchungen über den Reissnerschen Faden und die Ependymzellen im Rückenmark von Lampetra planeri (Bloch). Z Zellforsch Mikrosk Anat 72:516–524Google Scholar
  95. Sterba G, Müller H, Naumann W (1967a) Fluoreszenz- und elektronenmikroskopische Untersuchungen über die Bildung des Reissnerschen Fadens bei Lampetra Planeri (Bloch). Z Zellforsch Mikrosk Anat 76:355–376Google Scholar
  96. Sterba G, Ermisch A, Freyer K, Hartmann G (1967b) Incorporation of Sulphur-35 into the subcommissural organ and Reissner’s fibre. Nature 216:504.  https://doi.org/10.1038/216504a0 Google Scholar
  97. Sterba G, Wolf G, Scheuner G (1967c) Polarisatiosoptische Eigenschaften des Reissnerschen Fadens. Die Naturwissenschaften (18):495Google Scholar
  98. Sterba G, KieBig C, Naumann W, Petter J, Kleim I (1982) The secretion of the subcommissural organ. A comparative immunocytochemical investigation. Cell Tissue Res 226:427–439Google Scholar
  99. Sternberger LA, Hardy PH Jr, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333Google Scholar
  100. Stowell SR, Arthur CM, Mehta P, Slanina KA, Blixt O, Leffler H, Smith DF, Cummings RD (2006) Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem 283:10109–10123Google Scholar
  101. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354Google Scholar
  102. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Marth JD, Bertozzi CR, Hart GW, Etzler ME (2009) Symbol nomenclature for glycan representation. Proteomics 9:5398–5399.  https://doi.org/10.1002/pmic.200900708 Google Scholar
  103. Vío K, Rodríguez S, Navarrete EH, Pérez-Fígares JM, Jiménez AJ, Rodríguez EM (2000) Hydrocephalus induced by immunological blockage of the subcommissural organ-Reissner’s fiber (RF) complex by maternal transfer of anti-RF antibodies. Exp Brain Res 135:41–52Google Scholar
  104. Vío K, Rodríguez S, Yulis CR, Oliver C, Rodriguez EM (2008) The subcommissural organ of the rat secretes Reissner’s fiber glycopro- teins and CSF-soluble proteins reaching the internal and external CSF compartments. Cerebr Fluid Res 5:1–14.  https://doi.org/10.1186/1743-8454-5-3 Google Scholar
  105. Wagner C, Batiz LF, Rodríguez S, Jiménez AJ, Páez P, Tomé M, Pérez-Fígares JM, Rodríguez EM (2003) Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol 62:1019–1040Google Scholar
  106. Wenger T, Klein MJ, Sorckel ME, Porte A, Stutinsky F (1969) Sur la structure fine de la fibre de Reissner et son mode de formation au niveau de l’organo sous-commissural chez le rat. Comp Rend Scienc Soc Biol 163:2436–2443Google Scholar
  107. Wilson MR, Zoubeidi A (2016) BClusterin as a therapeutic target. Exp Opi Therap Targ.  https://doi.org/10.1080/14728222.2017.1267142
  108. Wolf G, Sterb G (1972) Zur stofflichen Charakteristik des Reissnerschen Fadens. Acta Zool (Stockh) 53:147–115Google Scholar
  109. Yulis CR, Mota MD, Andrades JA, Rodríguez S, Peruzzo B, Mancera JM, Ramirez P, Garrido M, Pérez-Fígarez JM, Fernández-Llebrez P, Rodríguez EM (1998) Floor plate and the subcommissural organ are the source of secretory compounds of related nature: comparative immunocytochemical study. J Comp Neurol 392:19–34Google Scholar
  110. Ziegels J (1976) The vertebrate subcommissural organ; a structural and functional review. Arch Biol 98:429–476Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rosa I. Muñoz
    • 1
  • Thilo Kähne
    • 2
  • Hernán Herrera
    • 1
  • Sara Rodríguez
    • 1
  • Ma. Montserrat Guerra
    • 1
  • Karin Vío
    • 1
  • René Hennig
    • 3
    • 4
  • Erdmann Rapp
    • 3
    • 4
  • Esteban Rodríguez
    • 1
    Email author
  1. 1.Instituto de Anatomía, Histología y Patología, Facultad de MedicinaUniversidad Austral de ChileValdiviaChile
  2. 2.Institute of Experimental Internal MedicineOtto-von-Guericke University MagdeburgMagdeburgGermany
  3. 3.Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
  4. 4.glyXera GmbHMagdeburgGermany

Personalised recommendations