Skip to main content

Advertisement

Log in

The hypothalamus and neuropsychiatric disorders: psychiatry meets microscopy

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The past decades have witnessed an explosion of knowledge on brain structural abnormalities in schizophrenia and depression. Focusing on the hypothalamus, we try to show how postmortem brain microscopy has contributed to our understanding of mental disease-related pathologic alterations of this brain region. Gross anatomical abnormalities (volume changes of the third ventricle, the hypothalamus, and its nuclei) and alterations at the cellular level (loss of neurons, increased or decreased expression of hypothalamic peptides such as oxytocin, vasopressin, corticotropin-releasing hormone, and other regulatory factors as well as of enzymes involved in neurotransmitter and neuropeptide metabolism) have been reported in schizophrenia and/or depression. While histologic research has mainly concentrated on neurons, little is currently known about the impact of non-neuronal cells for hypothalamus pathology in mental disorders. Their study would be a rewarding task for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altamura AC, Boin F, Maes M (1999) HPA axis and cytokines dysregulation in schizophrenia: potential implications for the antipsychotic treatment. Eur Neuropsychopharmacol 10:1–4

    Article  CAS  PubMed  Google Scholar 

  • Andrews PW, Bharwani A, Lee KR, Fox M, Thomson JA Jr (2015) Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neurosci Biobehav Rev 51:164–188. https://doi.org/10.1016/j.neubiorev.2015.01.018

    Article  CAS  PubMed  Google Scholar 

  • Bali A, Jaggi AS (2016) An integrative review on role and mechanisms of ghrelin in stress, anxiety and depression. Curr Drug Targets 17:495–507

    Article  CAS  PubMed  Google Scholar 

  • Banasr M, Dwyer JM, Duman RS (2011) Cell atrophy and loss in depression: reversal by antidepressant treatment. Curr Opin Cell Biol 23:730–7337. https://doi.org/10.1016/j.ceb.2011.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa DAN, Oliviera-Souza R, Monte Santo F, de Oliviera Faria AC, Gorgulho AA, De Sallas AAF (2017) The hypothalamus at the crossroads of psychopathology and neurosurgery. Neurosurg Focus 43:E15. https://doi.org/10.3171/2017.6.FOCUS17256

    Article  PubMed  Google Scholar 

  • Baumann B, Bornschlegl C, Krell D, Bogerts B (1997) Changes in CSF spaces differ in endogenous and neurotic depression. A planimetric CT scan study. J Affect Disord 45:179–188

    Article  CAS  PubMed  Google Scholar 

  • Baumann PS, Griffa A, Fournier M, Golay P, Ferrari C, Alameda L, Cuenod M, Thiran JP, Hagmann P, Do KQ, Conus P (2016) Impaired fornix-hippocampus integrity is linked to peripheral glutathione peroxidase in early psychosis. Transl Psychiatr 6:e859. https://doi.org/10.1038/tp.2016.117

    Article  CAS  Google Scholar 

  • Belvederi Murri M, Pariante CM, Dazzan P, Hepgul N, Papadopoulos AS, Zunszain P, Di Forti M, Murray RM, Mondelli V (2012) Hypothalamic-pituitary-adrenal axis and clinical symptoms in first-episode psychosis. Psychoneuroendocrinology 37:629–644. https://doi.org/10.1016/j.psyneuen.2011.08.013

    Article  CAS  PubMed  Google Scholar 

  • Berger M, Kraeuter AK, Romanik D, Malouf P, Amminger GP, Sarnyai Z (2016) Cortisol awakening response in patients with psychosis: systematic review and meta-analysis. Neurosci Biobehav Rev 68:157–166. https://doi.org/10.1016/j.neubiorev.2016.05.027

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Stanarius A, Baumann B, Henning H, Krell D, Danos P, Falkai P, Bogerts B (1998a) Nitric oxide synthase-containing neurons in the human hypothalamus: reduced number of immunoreactive cells in the paraventricular nucleus of depressive patients and schizophrenics. Neuroscience 83:867–875

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Keilhoff G, Seidel B, Stanarius A, Huang PL, Fishman MC, Reiser M, Bogerts B, Wolf G (1998b) Expression of hypothalamic peptides in mice lacking neuronal nitric oxide synthase: reduced beta-END immunoreactivity in the arcuate nucleus. Neuroendocrinology 68:403–411

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Jirikowski GF, Heinemann A, Baumann B, Hornstein C, Danos P, Diekmann S, Sauer H, Keilhoff G, Bogerts B (2000) Low and infrequent expression of nitric oxide synthase/NADPH-diaphorase in neurons of the human supraoptic nucleus: a histochemical study. J Chem Neuroanat 20:177–183

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Krell D, Emrich HM, Baumann B, Danos P, Diekmann S, Bogerts B (2002a) Fewer beta-endorphin expressing arcuate nucleus neurons and reduced beta-endorphinergic innervation of paraventricular neurons in schizophrenics and patients with depression. Cell Mol Biol 48 Online Pub:OL259–265

  • Bernstein HG, Heinemann A, Krell D, Mawrin C, Bielau H, Danos P, Diekmann S, Keilhoff G, Bogerts B, Baumann B (2002b) Further immunohistochemical evidence for impaired NO signaling in the hypothalamus of depressed patients. Ann N Y Acad Sci 973:91–93

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Bogerts B, Keilhoff G (2005a) The many faces of nitric oxide in schizophrenia. A review. Schizophr Res 78:69–86

    Article  PubMed  Google Scholar 

  • Bernstein HG, Heinemann A, Krell D, Dobrowolny H, Bielau H, Keilhoff G, Bogerts B (2005b) Hypothalamic nitric oxide synthase in affective disorder: focus on the suprachiasmatic nucleus. Cell Mol Biol 51:279–284

    CAS  PubMed  Google Scholar 

  • Bernstein HG, Krause S, Krell D, Dobrowolny H, Wolter M, Stauch R, Ranft K, Danos P, Jirikowski GF, Bogerts B (2007a) Strongly reduced number of parvalbumin-immunoreactive projection neurons in the mammillary bodies in schizophrenia: further evidence for limbic neuropathology. Ann N Y Acad Sci 1096:120–127

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Bukowska A, Dobrowolny H, Bogerts B, Lendeckel U (2007b) Cathepsin K and schizophrenia. Synapse 61:252–253

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Dobrowolny H, Bogerts B (2007c) Disturbed cross-talk between hypothalamic neuropeptides, nitric oxide and other factors may significantly contribute to the hyperactivity of the HPA axis in depression and schizophrenia. In: Levine BA (ed) Neuropeptide research trends. Nova Science Publishers, New York, pp 213–227

    Google Scholar 

  • Bernstein HG, Lendeckel U, Dobrowolny H, Stauch R, Steiner J, Grecksch G, Becker A, Jirikowski GF, Bogerts B (2008) Beacon-like/ubiquitin-5-like immunoreactivity is highly expressed in human hypothalamus and increased in haloperidol-treated schizophrenics and a rat model of schizophrenia. Psychoneuroendocrinology 33:340–351. https://doi.org/10.1016/j.psyneuen.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Ernst T, Lendeckel U, Bukowska A, Ansorge S, Stauch R, Have ST, Steiner J, Dobrowolny H, Bogerts B (2009) Reduced neuronal expression of insulin-degrading enzyme in the dorsolateral prefrontal cortex of patients with haloperidol-treated, chronic schizophrenia. J Psychiatr Res 43:1095–1105. https://doi.org/10.1016/j.jpsychires.2009.03.006

    Article  PubMed  Google Scholar 

  • Bernstein HG, Keilhoff G, Steiner J, Dobrowolny H, Bogerts B (2010a) The Hypothalamus in schizophrenia research: No longer a wallflower existence. Open Neuroendocrinol J 3:59–67

    Article  CAS  Google Scholar 

  • Bernstein HG, Heinemann A, Steiner J, Bogerts B (2010b) Schizophrenia, sleep disturbances and the suprachiasmatic nucleu: reduced nittric synthase may matter. Med Hypotheses 74:397–398. https://doi.org/10.1016/j.mehy.2009.08.026

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Klix M, Dobrowolny H, Brisch R, Steiner J, Bielau H, Gos T, Bogerts B (2012a) A postmortem assessment of mammillary body volume, neuronal number and densities, and fornix volume in subjects with mood disorders. Eur Arch Psychiatry Clin Neurosci 262:637–646. https://doi.org/10.1007/s00406-012-0300-4

    Article  PubMed  Google Scholar 

  • Bernstein HG, Klix M, Dobrowolny H, Brisch R, Steiner J, Bielau H, Gos T, Bogerts B (2012b) A postmortem assessment of mammillary body volume, neuronal number and densities, and fornix volume in subjects with mood disorders. Eur Arch Psychiatry Clin Neurosci 262:637–646. https://doi.org/10.1007/s00406-012-0300-4

    Article  PubMed  Google Scholar 

  • Bernstein HG, Steiner J, Guest PC, Dobrowolny H, Bogerts B (2015a) Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy. Schizophr Res 16:4–18. https://doi.org/10.1016/j.schres.2014.03.035

    Article  Google Scholar 

  • Bernstein HG, Busse S, Dobrowolny H, Vlassig S, Bogerts B, Steiner J (2015b) Immunologische und neuroendokrine Einflussfaktoren bei Entwicklung schizophrener und bipolarer Störungen: Rolle des VGF Gens. 19. Meeting German Soc Endocrinol. Munich, abstr.12

  • Bernstein HG, Müller S, Dobrowolny H, Wolke C, Lendeckel U, Bukowska A, Keilhoff G, Becker A, Trübner K, Steiner J, Bogerts B (2017a) Insulin-regulated aminopeptidase immunoreactivity is abundantly present in human hypothalamus and posterior pituitary gland, with reduced expression in paraventricular and suprachiasmatic neurons in chronic schizophrenia. Eur Arch Psychiatry Clin Neurosci 267:427–443. https://doi.org/10.1007/s00406-016-0757-7

    Article  PubMed  Google Scholar 

  • Bernstein HG, Bogerts B, Keilhoff G, Steiner J (2017b) Postmortem studies indicate altered cell chemical composition of the suprachiasmatic nucleus in mood disorders. Eur Arch Psychiatry Clin Neurosci. https://doi.org/10.1007/s00406-017-0849-z

  • Bielau H, Trübner K, Krell D, Agelink MW, Bernstein HG, Stauch R, Mawrin C, Danos P, Gerhard L, Bogerts B, Baumann B (2005) Volume deficits of subcortical nuclei in mood disorders: a postmortem study. Eur Arch Psychiatry Clin Neurosci 255:401–412

    Article  PubMed  Google Scholar 

  • Bielau H, Brisch R, Gos T, Dobrowolny H, Baumann B, Mawrin C, Kreutzmann P, Bernstein HG, Bogerts B, Steiner J (2013) Volumetric analysis of the hypothalamus, amygdala and hippocampus in non-suicidal and suicidal mood disorder patients—a post-mortem study. CNS Neurol Disord Drug Targets 12:914–920

    Article  CAS  PubMed  Google Scholar 

  • Boku S, Nakagawa S, Toda H, Hishimoto (2018) A neural basis of major depressive disorder: beyond monoamine hypothesis. Psychiatry Clin Neurosci 72:3–12. https://doi.org/10.1111/pcn.12604

    Article  CAS  PubMed  Google Scholar 

  • Borges S, Gayer-Anderson C, Mondelli V (2013) A systematic review of the activity of the hypothalamic-pituitary-adrenal axis in first episode psychosis. Psychoneuroendocrinology 38:603–611

    Article  CAS  PubMed  Google Scholar 

  • Bozaoglu K, Curran JE, Elliott KS, Walder KR, Dyer TD, Rainwater DL, VandeBerg JL, Comuzzie AG, Collier GR, Zimmet P, MacCluer JW, Jowett JB, Blangero J (2006) Association of genetic variation within UBL5 with phenotypes of metabolic syndrome. Hum Biol 78:147–159

    Article  PubMed  Google Scholar 

  • Bouret SG (2017) Development of hypothalamic circuits that control food intake and energy balance. In: Harris RBS ( ed) Appetite and Food Intake: Central Control CRC Press Baton Rouge, Chapter 7

  • Bradley AJ, Dinan TG (2010) A systematic review on hypothalamic-pituitary-adrenal axis function in schizophrenia: implications for mortality. J Psychopharmacol 24(4 Suppl):91–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Brambilla F, Santonastaso P, Caregaro L, Favaro A (2006) Disorders of eating behavior: correlation between hypothalamo-pituitary-thyroid function and psychopathological aspects. Psychoneuroendocrinology 31:131–136

    Article  CAS  PubMed  Google Scholar 

  • Briess D, Cotter D, Doshi R, Everall I (1998) Mamillary body abnormalities in schizophrenia. Lancet 352(9130):789–790

    Article  CAS  PubMed  Google Scholar 

  • Brigham A (1837) Insanity and insane hospitals. N Am Rev 44:91–121

    Google Scholar 

  • Brisch R, Bernstein HG, Stauch R, Dobrowolny H, Krell D, Truebner K, Meyer-Lotz G, Bielau H, Steiner J, Kropf S, Gos T, Danos P, Bogerts B (2008) The volumes of the fornix in schizophrenia and affective disorders: a post-mortem study. Psychiatry Res 164:265–273. https://doi.org/10.1016/j.pscychresns.2007.12.007

    Article  PubMed  Google Scholar 

  • Brisch R, Steiner J, Mawrin C, Krzyżanowska M, Jankowski Z, Gos T (2017) Microglia in the dorsal raphe nucleus plays a potential role in both suicide facilitation and prevention in affective disorders. Eur Arch Psychiatry Clin Neurosci 267:403–415. https://doi.org/10.1007/s00406-017-0774-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Busse S, Bernstein HG, Busse M, Bielau H, Brisch R, Mawrin C, Müller S, Sarnyai Z, Gos T, Bogerts B, Steiner S (2012) Reduced density of hypothalamic VGF-immunoreactive neurons in schizophrenia: potential link to impaired growth factor signaling and energy homeostasis. Eur Arch Psychiatry Clin Neurosci 262:365–374. https://doi.org/10.1007/s00406-011-0282

    Article  PubMed  Google Scholar 

  • Chance SA, Highley JR, Esiri MM, Crow TJ (1999) Fiber content of the fornix in schizophrenia: lack of evidence for a primary limbic encephalopathy. Am J Psychiatry 156:1720–1724

    CAS  PubMed  Google Scholar 

  • Collier GR, McMillan JS, Windmill K, Walder K, Tenne-Brown J, de Silva A, Trevaskis J, Jones S, Morton GJ, Lee S, Augert G, Civitarese A, Zimmet PZ (2000) Beacon: a novel gene involved in the regulation of energy balance. Diabetes 49:1766–1771

    Article  CAS  PubMed  Google Scholar 

  • Dupont RM, Jernigan TL, Heindel W, Butters N, Shafer K, Wilson T, Hesslink J, Gillin JC (1995) Magnetic resonance imaging and mood disorders. Arch Gen Psychiatry 52:747–755

    Article  CAS  PubMed  Google Scholar 

  • Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, Bullmore E (2008) The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatry 165:1015–1023. https://doi.org/10.1176/appi.ajp.2008.07101562

    Article  PubMed  PubMed Central  Google Scholar 

  • Falkai P, Schmitt A (2016) News from the graveyard: neuropathological research on schizophrenia is alive and productive. Schizophr Res 177:1–2. https://doi.org/10.1016/j.schres.2016.06.029

    Article  PubMed  Google Scholar 

  • Falkai P, Malchow B, Wetzestein K, Nowastowski V, Bernstein HG, Steiner J, Schneider-Axmann T, Kraus T, Hasan A, Bogerts B, Schmitz C, Schmitt A (2016) Decreased oligodendrocyte and neuron Number in anterior hippocampal areas and the entire hippocampus in schizophrenia: a stereological postmortem study. Schizophr Bull 42(Suppl 1):S4–S12. https://doi.org/10.1093/schbul/sbv157

    Article  PubMed  PubMed Central  Google Scholar 

  • Fannon D, Tennakoon L, Sumich A, O'Ceallaigh S, Doku V, Chitnis X, Lowe J, Soni W, Sharma T (2000) Third ventricle enlargement and developmental delay in first-episode psychosis: preliminary findings. Br J Psychiatry 177:354–359

    Article  CAS  PubMed  Google Scholar 

  • Farley IJ, Price KS, McCullough E, Deck JH, Hordynski W, Hornykiewicz O (1978) Norpeinephrine in chronic paranoid schizophrenia: above-normal levels in the limbic forebrain. Science 200:456–458

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Atucha A, Echevarría E, Larrinaga G, Gil J, Martínez-Cengotitabengoa M, González-Pinto AM, Irazusta J, Seco J (2015) Plasma peptidases as prognostic biomarkers in patients with first-episode psychosis. Psychiatry Res 228:197–202. https://doi.org/10.1016/j.psychres.2015.04.027

    Article  CAS  PubMed  Google Scholar 

  • Fernø J, Varela L, Skrede S, Vázquez MJ, Nogueiras R, Diéguez C, Vidal-Puig A, Steen VM, López M (2011) Olanzapine-induced hyperphagia and weight gain associate with orexigenic hypothalamic neuropeptide signaling without concomitant AMPK phosphorylation. PLoS One 6(6):e20571. https://doi.org/10.1371/journal.pone.0020571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer S, Macare C, Cleare AJ (2017) Hypothalamic-pituitary-adrenal (HPA) axis functioning as predictor of antidepressant response-Meta-analysis. Neurosci Biobehav Rev 83:200–211. https://doi.org/10.1016/j.neubiorev.201

    Article  CAS  PubMed  Google Scholar 

  • Fliers E, Alkemade A, Wiersinga WM, Swaab DF (2006) Hypothalamic thyroid hormone feedback in health and disease. Prog Brain Res 153:189–207

    Article  CAS  PubMed  Google Scholar 

  • Frank E, Landgraf R (2008) The vasopressin system—from antidiuresis to psychopathology. Eur J Pharmacol 583:226–242

    Article  CAS  PubMed  Google Scholar 

  • Frederiksen SO, Ekman R, Gottfries CG, Widerlöv E, Jonsson S (1991) Reduced concentrations of galanin, arginine vasopressin, neuropeptide Y and peptide YY in the temporal cortex but not in the hypothalamus of brains from schizophrenics. Acta Psychiatr Scand 83:273–274

    Article  CAS  PubMed  Google Scholar 

  • Gao SF, Bao AM (2011) Corticotropin-releasing hormone, glutamate, and γ-aminobutyric acid in depression. Neuroscientist 17:124–144. https://doi.org/10.1177/1073858410361780

    Article  CAS  PubMed  Google Scholar 

  • Gao SF, Klomp A, Wu JL, Swaab DF, Bao AM (2013) Reduced GAD (65/67) immunoreactivity in the hypothalamic paraventricular nucleus in depression: a postmortem study. J Affect Disord 149:422–425. https://doi.org/10.1016/jad.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  • Gao SF, Lu YR, Shi LG, XY W, Sun B, Fu XY, Luo J, Bao AM (2014) Nitric oxide synthase and nitric oxide alterations in chronically stressed rats: a model for nitric oxide in depression. Psychoneuroendocrinology 47:136–140

    Article  CAS  PubMed  Google Scholar 

  • Gerber EI (1965) Histopathology of neurosecretory nuclei in different types of schizophrenia (in Russian). Vestnik Akad. Med Nauk SSSR 21:37–44

    Google Scholar 

  • Ghanei Gheshlagh R, Parizad N, Sayehmiri K (2016) The relationship between depression and metabolic syndrome: systematic review and meta-analysis study. Iran Red Crescent Med J 18(6):e26523. https://doi.org/10.5812/ircmj.26523. eCollection 2016 Jun

  • Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–73

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JM, Seidman LJ, Makris N, Ahern T, O'Brien LM, Caviness VS Jr, Kennedy DN, Faraone SV, Tsuang MT (2007) Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability. Biol Psychiatry 61:935–945

    Article  CAS  PubMed  Google Scholar 

  • Guest PC, Schwarz E, Krishnamurthy D, Harris LW, Leweke FM, Rothermundt M, van Beveren NJ, Spain M, Barnes A, Steiner J, Rahmoune H, Bahn S (2011) Altered levels of circulating insulin and other neuroendocrine hormones associated with the onset of schizophrenia. Psychoneuroendocrinology 36:1092–1096. https://doi.org/10.1016/j.psyneuen.2010.12.018

    Article  CAS  PubMed  Google Scholar 

  • Haijma SV, Van Haren N, Cahn W, Koolschijn PC, Hulshoff Pol HE, Kahn RS (2013) Brain volumes in schizophrenia: a meta-analysis in over 18000 subjects. Schizophr Bull 39:1129–1138. https://doi.org/10.1093/schbul/sbs118

    Article  PubMed  Google Scholar 

  • Haracz JL (1982) The dopamine hypothesis: a overview of studies with schizophrenic patients. Schizophr Bull 8:438–489

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ (2000) Postmortem studies in schizophrenia. Dialogues Clin Neurosci 2:349–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hechst B (1931) Zur Histopathologie der Schizophrenie mit besonderer Berücksichtigung der Ausbreitung des Prozesses. Z ges. Neurol Psychiatr 134:164–267

    Google Scholar 

  • Heckers S (1997) Neuropathology of schizophrenia: cortex, thalamus, basal ganglia, and neurotransmitter-specific projection systems. Schizophr Bull 23:403–421

    Article  CAS  PubMed  Google Scholar 

  • Hegadoren KM, O'Donnell T, Lanius R, Coupland NJ, Lacaze-Masmonteil N (2009) The role of beta-endorphin in the pathophysiology of major depression. Neuropeptides 43:341–353. https://doi.org/10.1016/j.npep.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  • Hendrie CA, Pickles AR (2010) Depression as an evolutionary adaptation: anatomical organisation around the third ventricle. Med Hypotheses 74:735–740. https://doi.org/10.1016/j.mehy.2009.10.026

    Article  CAS  PubMed  Google Scholar 

  • Heringa SM, Begemann MJ, Goverde AJ, Sommer IE (2015) Sex hormones and oxytocin augmentation strategies in schizophrenia: a quantitative review. Schizophr Res 168:603–613. https://doi.org/10.1016/j.schres.2015.04.002

    Article  PubMed  Google Scholar 

  • Hoogendijk WJ, Meynen G, Eikelenboom P, Swaab DF (2000) Brain alterations in depression. Acta Neuropsychiatr 12:54–58

    Article  CAS  PubMed  Google Scholar 

  • Huhtaniska S, Jääskeläinen E, Hirvonen N, Remes J, Murray GK, Veijola J, Isohanni M, Miettunen J (2017) Long-term antipsychotic use and brain changes in schizophrenia—a systematic review and meta-analysis. Hum Psychopharmacol 32:e2574. https://doi.org/10.1002/hup.2574

    Article  CAS  Google Scholar 

  • Jaaro-Peled H, Ayhan Y, Pletnikov MV, Sawa A (2010) Review of pathological hallmarks of schizophrenia: comparison of genetic models with patients and nongenetic models. Schizophr Bull 36:301–313. https://doi.org/10.1093/schbul/sbp133

    Article  PubMed  Google Scholar 

  • Jalewa J, Wong-Lin K, McGinnity TM, Prasad G, Hölscher C (2014) Increased number of orexin/hypocretin neurons with high and prolonged external stress-induced depression. Behav Brain Res 72:196–204. https://doi.org/10.1016/j.bbr.2014.05.030

    Article  CAS  Google Scholar 

  • Jarvis E (1841) Insanity and insane asylums. Prentice and Weissinger, Louisville

    Google Scholar 

  • Kadowaki K, Kishimoto J, Leng G, Emson PC (1994) Up-regulation of nitric oxide synthase (NOS) gene expression together with NOS activity in the rat hypothalamo-hypophysial system after chronic salt loading: evidence of a neuromodulatory role of nitric oxide in arginine vasopressin and oxytocin secretion. Endocrinology 134:1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Kalra SP, Dube MG, Pu S, Xu S, Horvath TL, Kalra PS (1999) Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocrine Rev 20:68–100

    CAS  Google Scholar 

  • Kiss A, Bundzikova J, Pirnik Z, Mikkelsen JD (2010) Different antipsychotics elicit different effects on magnocellular oxytocinergic and vasopressinergic neurons as revealed by Fos immunohistochemistry. J Neurosci Res 88:677–685. https://doi.org/10.1002/jnr.22226.

    Article  CAS  PubMed  Google Scholar 

  • Klomp A, Koolschijn PC, Hulshoff Pol HE, Kahn RS, Haren NE (2012) Hypothalamus and pituitary volume in schizophrenia: a structural MRI study. Int J Neuropsychopharmacol 15:281–288. https://doi.org/10.1017/S1461145711000794

    Article  PubMed  Google Scholar 

  • Koenigs M, Grafman J (2009) The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res 201:239–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Koolschijn PC, van Haren NE, Hulshoff Pol HE, Kahn RS (2008) Hypothalamus volume in twin pairs discordant for schizophrenia. Eur Neuropsychopharmacol 18:312–315

    Article  CAS  PubMed  Google Scholar 

  • Korpi ER, Kleinman JE, Goodman SI, Wyatt RJ (1987) Neurotransmitter amino acids in post-mortem brains of chronic schizophrenic patients. Psychiatry Res 22:291–301

    Article  CAS  PubMed  Google Scholar 

  • Kraines SH (1957) The physiologic basis of manic-depressive illness. A theory. Am J Psychiatry 114:206–211

    Article  CAS  PubMed  Google Scholar 

  • Kraines SH (1966) Manic depressive syndrome: a physiologic disease. Dis Nerv Sys 27:573–582

    CAS  Google Scholar 

  • Krishnamurthy D, Harris LW, Levin Y, Koutroukides TA, Rahmoune H, Pietsch S, Vanattou-Saifoudine N, Leweke FM, Guest PC, Bahn S (2013) Metabolic, hormonal and stress-related molecular changes in post-mortem pituitary glands from schizophrenia subjects. World J Biol Psychiatry 14:478–489. https://doi.org/10.3109/15622975.2011.601759

    Article  PubMed  Google Scholar 

  • Kuroki N, Kubicki M, Nestor PG, Salisbury DF, Park HJ, Levitt JJ, Woolston S, Frumin M, Niznikiewicz M, Westin CF, Maier SE, McCarley RW, Shenton ME (2006) Fornix integrity and hippocampal volume in male schizophrenic patients. Biol Psychiatry 60:22–31

    Article  PubMed  PubMed Central  Google Scholar 

  • LaCrosse AL, Olive MF (2013) Neuropeptide systems and schizophrenia. CNS Neurol Disord Drug Targets 12:619–632

    Article  CAS  PubMed  Google Scholar 

  • Lammers HJ, Lohman AH (1974) Structure and fiber connections of the hypothalamus in mammals. Prog Brain Res 41:61–78

    Article  CAS  PubMed  Google Scholar 

  • Laux-Biehlmann A, Mouheiche J, Vérièpe J, Goumon Y (2013) Endogenous morphine and its metabolites in mammals: history, synthesis, localization and perspectives. Neuroscience 233:95–117. https://doi.org/10.1016/j.neuroscience.2012.12.013

    Article  CAS  PubMed  Google Scholar 

  • Legros JJ, Gazzotti C, Carvelli T, Franchimont P, Timsit-Berthier M, von Frenckell R, Ansseau M (1992) Apomorphine stimulation of vasopressin- and oxytocin-neurophysins. Evidence for increased oxytocinergic and decreased vasopressinergic function in schizophrenics. Psychoneuroendocrinology 17:611–617

    Article  CAS  PubMed  Google Scholar 

  • Lendeckel U, Kähne T, Ten Have S, Bukowska A, Wolke C, Bogerts B, Keilhoff G, Bernstein HG (2009) Cathepsin K generates enkephalin from beta-endorphin: a new mechanism with possible relevance for schizophrenia. Neurochem Int 54:410–417. https://doi.org/10.1016/j.neuint.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  • Lechan RM, Toni R (2016) Functional Anatomy of the Hypothalamus and Pituitary. Endotext, Internet( De Groot LJ, Chrousos G, Dungan K, et al., ed.), MDText.org

  • Lesch A, Bogerts B (1984) The diencephalon in schizophrenia: evidence for reduced thickness of the periventricular grey matter. Eur Arch Psychiatry Neurol Sci 234:212–219

    Article  CAS  PubMed  Google Scholar 

  • Loyens E, De Bundel D, Demaegdt H, Chai SY, Vanderheyden P, Michotte Y, Gard P, Smolders I (2012) Antidepressant-like effects of oxytocin in mice are dependent on the presence of insulin-regulated aminopeptidase. Int J Neuropsychopharmacol 26:1–11

    Google Scholar 

  • Lu J, Zhao J, Balesar R, Fronczek R, Zhu QB, Wu XY, Hu SH, Bao AM, Swaab DF (2017) Biomedicine 18:311–319. https://doi.org/10.1016/j.ebiom.2017.03.043

    Article  Google Scholar 

  • Lucassen PJ, Goudsmit E, Pool CW, Mengod G, Palacios JM, Raadsheer FC, Guldenaar SE, Swaab DF (1995) In situ hybridization for vasopressin mRNA in the human supraoptic and paraventricular nucleus; quantitative aspects for formalin-fixed paraffin-embedded tissue sections as compared to cryostat sections. J Neurosci Methods 57:221–230

    Article  CAS  PubMed  Google Scholar 

  • Mai J, Berger K, Sofroniew MV (1993) Morphometric evaluation of neurophysin-immunoreactivity in the human brain: pronounced inter-individual variability and evidence for altered staining patterns in schizophrenia. J Hirnforsch 34:133–154

    CAS  PubMed  Google Scholar 

  • Malidelis YI, Panayotacopoulou MT, van Heerikhuize JJ, Unmehopa UA, Kontostavlaki DP, Swaab DF (2005) Absence of a difference in the neurosecretory activity of supraoptic nucleus of vasopressin neurons of neuroleptic-treated schizophrenic patients. Neuroendocrinology 82:63–69

    Article  CAS  PubMed  Google Scholar 

  • Manaye KF, Lei DL, Tizabi Y, Dávila-García MI, Mouton PR, Kelly PH (2005) Selective neuron loss in the paraventricular nucleus of hypothalamus in patients suffering from major depression and bipolar disorder. J Neuropathol Exp Neurol 64:224–229

    Article  PubMed  Google Scholar 

  • Marazzati D, Catena dellósso M (2008) The role of oxytocin in neuropsychiatric disorders. Curr Med Chem 15:698–704

    Article  Google Scholar 

  • Mastorakos G, Zapani E (2004) The hypothalamic-pituitary-adrenal axis in the neuroendocrine regulation of food intake and obesity: the role of corticotropin-releasing hormone. Nutr Neurosci 7:271–280

    Article  CAS  PubMed  Google Scholar 

  • Mechawar N, Savitz J (2016) Neuropathology of mood disorders: do we see the stigmata of inflammation? Transl Psychiatry 6:e946. https://doi.org/10.1038/tp.2016.212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo I, Drews E, Zimmer A, Bilkei-Gorzo A (2014) Enkephalin knockout male mice are resistant to chronic mild stress. Genes Brain Behav 13:550–558. https://doi.org/10.1111/gbb.12139

    Article  CAS  PubMed  Google Scholar 

  • Merenlender-Wagner A, Dikshtein Y, Yadid G (2009) The beta-endorphin role in stress-related psychiatric disorders. Curr Drug Targets 10:1096–1108

    Article  CAS  PubMed  Google Scholar 

  • Meynen G, Unmehopa UA, van Heerikhuize JJ, Hofman MA, Swaab DF, Hoogendijk WJ (2006) Increased hypothalamic in depression: a preliminary report. Biol Psychiatry 60:862–805

    Article  CAS  Google Scholar 

  • Meynen G, Unmehopa UA, Hofman MA, Swaab DJ, Hoogendijk WJG (2007) Hypothalamic oxytocin mRNA expression and melancholic depression. Mol Psychiatry 12:119–119

    Article  CAS  Google Scholar 

  • Milaneschi Y, Simmons WK, van Rossum EFC, Penninx BW (2018) Depression and obesity: evidence of shared biological mechanisms. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0017-5

  • Mosebach J, Keilhoff G, Gos T, Schiltz K, Schoeneck L, Dobrowolny H, Mawrin C, Müller S, Schroeter ML, Bernstein HG, Bogerts B, Steiner J (2013) Increased nuclear Olig1-expression in the pregenual anterior cingulate white matter of patients with major depression: a regenerative attempt to compensate oligodendrocyte loss? J Psychiatr Res 47:1069–1079. https://doi.org/10.1016/j.jpsychires.2013.03.018

    Article  PubMed  Google Scholar 

  • Müller S, Lendeckel U, Dobrowolny H, Steiner J, Bogerts B, Bernstein HG (2013) Some notes on insulin-regulated aminopeptidase in depression. Int J Neuropsychopharmacol 16:1877–1878. https://doi.org/10.1017/S1461145713000199

    Article  CAS  PubMed  Google Scholar 

  • Nemeroff CB, Walsh TJ, Bissette G (1986) Somatostatin and behavior: preclinical and clinical studies. In: Somatostatin: basic and clinical status. Reichlin S (ed) Springer, pp.157–169

  • Orlando GF, Langnaese K, Schulz C, Wolf G, Engelmann M (2008) Neuronal nitric oxide synthase gene inactivation reduces the expression of vasopressin in the hypothalamic paraventricular nucleus and of catecholamine biosynthetic enzymes in the adrenal gland of the mouse. Stress 11:42–51

    Article  CAS  PubMed  Google Scholar 

  • Othman SS, Abdul Kadir K, Hassan J, Hong GK, Singh BB, Raman N (1994) High prevalence of thyroid function test abnormalities in chronic schizophrenia. Aust N Z J Psychiatry 28:620–624

    Article  CAS  PubMed  Google Scholar 

  • Parhar IS, Ogawa S, Ubuka T (2016) Reproductive neuroendocrine pathways of social behavior. Front Endocrinol 7:28. https://doi.org/10.3389/fendo.2016.00028 eCollection 2016

    Article  Google Scholar 

  • Patel KR, Cherian J, Gohil K, Atkinson D (2014) Schizophrenia: Overview and treatment options. Pharm Ther 39:638–645

    Google Scholar 

  • Peabody CA, Warner MD, Markoff E, Hoffman AR, Wilson DM, Csernansky JG (1990) Growth hormone response to growth hormone releasing hormone in depression and schizophrenia. Psychiatry Res 33:269–276

    Article  CAS  PubMed  Google Scholar 

  • Pinilla B P (2009) Auswirkungen der unipolar depressiven Störung auf strukturelle Gehirnveränderungen in der Voxel-based-NMR-Morphometry und auf "hippocampusspezifische" kognitive Leistungen. Charité Berlin, Dissertation (Ph.D Thesis)

  • Purba JS, Hoogendijk WJ, Hofman MA, Swaab DF (1996) Increased number of vasopressin-and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch Gen Psychiatry 53:137–143

    Article  CAS  PubMed  Google Scholar 

  • Raadsheer FC, Hoogendijk WJG, Stam FC, Tilders FJH, Swaab DF (1994) Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60:436–444

    Article  CAS  PubMed  Google Scholar 

  • Raadsheer FC, van Heerikhuize JJ, Lucassen PJ, Hoogendijk WJ, Tilders FJ, Swaab DF (1995) Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimer's disease and depression. Am J Psychiatry 152:1372–1376

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska G, Selemon LD, Goldman-Rakic (1998) PS. Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 55:215–224

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska G, Halaris A, Selemon LD (2001) Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 49:741–752

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14:1225–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajkumar RP (2014) Prolactin and psychopathology in schizophrenia: a literature review and reappraisal. Schizophrenia Res Treat 2014:175360. https://doi.org/10.1155/2014/175360

    Article  CAS  Google Scholar 

  • Ranft K, Dobrowolny H, Krell D, Bielau H, Bogerts B, Bernstein HG (2010) Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psychol Med 40:557–567. https://doi.org/10.1017/S0033291709990821

    Article  CAS  PubMed  Google Scholar 

  • Rao C, Shi H, Zhou C, Zhu D, Zhao M, Wang Z, Yang Y, Chen J, Liao L, Tang J, Wu Y, Zhou J, Cheng K, Xie P (2016) Hypothalamic proteomic analysis reveals dysregulation of glutamate balance and energy metabolism in a mouse model of chronic mild stress-induced depression. Neurochem Res 41:2443–2456. https://doi.org/10.1007/s11064-016-1957-2

    Article  CAS  PubMed  Google Scholar 

  • Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, Lesch KP (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11:514–522

    Article  CAS  PubMed  Google Scholar 

  • Reis WL, Giusti-Paiva A, Ventura RR, Margatho LO, Gomes DA, Elias LL, Antunes-Rodrigues J (2007) Central nitric oxide blocks vasopressin, oxytocin and atrial natriuretic peptide release and antidiuretic and natriuretic responses induced by central angiotensin II in conscious rats. J Exp Physiol 92:903–911

    Article  CAS  Google Scholar 

  • Ribeiro A, Ribeiro JP, von Doellinger O (2017) Depression and psychodynamic psychotherapy. Rev Bras Psiquiatr. https://doi.org/10.1590/1516-4446-2016-2107

  • Riecher-Rössler A (2017) Oestrogens, prolactin, hypothalamic-pituitary-gonadal axis, and schizophrenic psychoses. Lancet Psychiatry 4:63–72. https://doi.org/10.1016/S2215-0366(16)30379-0

    Article  PubMed  Google Scholar 

  • Sambataro F, Doerig N, Hänggi J, Wolf RC, Brakowski J, Holtforth MG, Seifritz E, Spinelli S (2018) Eur Neuropsychopharmacol 28:138–148. https://doi.org/10.1016/j.euroneuro.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  • Sangruichi T, Kowall NW (1991) NADPH diaphorase in the human hypothalamus. Neuroscience 40:713–724

    Article  Google Scholar 

  • Santos NC, Costa P, Ruano D, Macedo A, Soares MJ, Valente J, Pereira AT, Azevedo MH, Palha JA (2012) Revisiting thyroid hormones in schizophrenia. J Thyroid Res 2012:569147. https://doi.org/10.1155/2012/569147

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiffer B, Leygraf N, Müller BW, Scherbaum N, Forsting M, Wiltfang J, Gizewski ER, Hodgins S (2013) Structural brain alterations associated with schizophrenia preceded by conduct disorder: a common and distinct subtype of schizophrenia? Schizophr Bull 39:1115–1128. https://doi.org/10.1093/schbul/sbs115

    Article  PubMed  Google Scholar 

  • Schindler S, Geyer S, Strauß M, Anwander A, Hegerl U, Turner R, Schönknecht P (2012) Structural studies of the hypothalamus and its nuclei in mood disorders. Psychiatry Res 201:1–9. https://doi.org/10.1016/j.pscychresns.2011.06.005

    Article  PubMed  Google Scholar 

  • Schmauss C, Emrich HM (1985) Dopamine and the action of opiates: a reevaluation of the dopamine hypothesis of schizophrenia. With special consideration of the role of endogenous opioids in the pathogenesis of schizophrenia. Biol Psychiatry 20:1211–1231

    Article  CAS  PubMed  Google Scholar 

  • Schmitt A, Steyskal C, Bernstein HG, Schneider-Axmann T, Parlapani E, Schaeffer EL, Gattaz WF, Bogerts B, Schmitz C, Falkai P (2009) Stereologic investigation of the posterior part of the hippocampus in schizophrenia. Acta Neuropathol 117:395–407. https://doi.org/10.1007/s00401-008-0430-y

    Article  PubMed  Google Scholar 

  • Schmitt A, Hasan A, Gruber O, Falkai P (2011) Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 261(Suppl 2):S150–S154. https://doi.org/10.1007/s00406-011-0242-2

    Article  PubMed  Google Scholar 

  • Schwartz TL, Sachdeva S, Stahl SM (2012) Glutamate neurocircuitry: theoretical underpinnings in schizophrenia. Front Pharmacol 3:195. https://doi.org/10.3389/fphar.2012.00195 eCollection 2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott ML, Golden CJ, Ruedrich SL, Bishop RJ (1987) Ventricular enlargement in major depression. Psychiatry Res 8:91–93

    Article  Google Scholar 

  • Seeburg PH, Mason AJ, Stewart TA, Nikolics K (1987) The mammalian GnRH gene and its pivotal role in reproduction. Recent Prog Horm Res 43:69–98

    CAS  PubMed  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1999) The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 45:17–25

    Article  CAS  PubMed  Google Scholar 

  • Sestan-Pesa M, Horvath TL (2016) Metabolism and mental illness. Trends Mol Med 22:174–183. https://doi.org/10.1016/j.molmed.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  • Shan L, Qi XR, Balesar R, Swaab DF, Bao AM (2013) Unlatered histaminergic sytem in depression: a postmortem study. J Affect Disord 146:220–223. https://doi.org/10.1016/jad.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  • Shepherd AM, Laurens KR, Matheson SL, Carr VJ, Green MJ (2012) Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia. Neurosci Biobehav Rev 36:1342–1356. https://doi.org/10.1016/j.neubiorev.2011.12.015

    Article  PubMed  Google Scholar 

  • Staner L, Duval F, Haba J, Mokrani MC, Macher JP (2003) Disturbances in hypothalamo pituitary adrenal and thyroid axis identify different sleep EEG patterns in major depressed patients. J Psychiatr Res 37:1–8

    Article  CAS  PubMed  Google Scholar 

  • Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, Bernstein HG, Bogerts B (2008) Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 42:151–157

    Article  PubMed  Google Scholar 

  • Steiner J, Fernandes BS, Guest PC, Dobrowolny H, Meyer-Lotz G, Westphal S, Borucki K, Schiltz K, Sarnyai Z, Bernstein HG (2018) Glucose homeostasis in major depression and schizophrenia: a comparison among drug-naïve first-episode patients. Eur Arch Psychiatry Clin Neurosci. https://doi.org/10.1007/s00406-018-0865-7

  • Stevens JR (1982) Neuropathology of schizophrenia. Arch Gen Psychiatry 39:1131–1139

    Article  CAS  PubMed  Google Scholar 

  • Sugama S, Kakinuma Y (2016) Loss of dopaminergic neurons occurs in the ventral tegmental area and hypothalamus of rats following chronic stress: possible pathogenetic loci for depression involved in Parkinson's disease. Neurosci Res 111:48–55. https://doi.org/10.1016/j.neures.2016.04.008

    Article  CAS  PubMed  Google Scholar 

  • Tanskanen P, Ridler K, Murray GK, Haapea M, Veijola JM, Jääskeläinen E, Miettunen J, Jones PB, Bullmore ET, Isohanni MK (2010) Schizophr Bull 36:766–777. https://doi.org/10.1093/schbul/sbn141

    Article  PubMed  Google Scholar 

  • Tiwari AK, Brandl EJ, Zai CC, Goncalves VF, Chowdhury NI, Freeman N, Lieberman JA, Meltzer HY, Kennedy JL, Müller DJ (2016) Association of orexin receptor polymorphisms with antipsychotic-induced weight gain. World J Biol Psychiatry 17:221–229. https://doi.org/10.3109/15622975.2015.1076173

    Article  PubMed  Google Scholar 

  • Tognin S, Rambaldelli G, Perlini C, Bellani M, Marinelli V, Zoccatelli G, Alessandrini F, Pizzini FB, Beltramello A, Terlevic R, Tansella M, Balestrieri M, Brambilla P (2012) Enlarged hypothalamic volumes in schizophrenia. Psychiatry Res 204:75–81. https://doi.org/10.1016/j.pscychresns.2012.10.006

    Article  PubMed  Google Scholar 

  • Torrey EF (2017) Schizophrenia and bipolar disorder are disorders of the brain. https://mentalillnesspolicy.org/medical/schizophrenia-brain-studies.htm

  • Tsuru J, Ishitobi Y, Ninomiya T, Kanehisa M, Imanaga J, Inoue A, Okamoto S, Maruyama Y, Higuma H, Tanaka Y, Hanada H, Isogawa K, Akiyoshi J (2013) The thyrotropin-releasing hormone test may predict recurrence of clinical depression within ten years after discharge. Neuro Endocrinol Lett 34:409–417

    PubMed  Google Scholar 

  • Uranova NA, Vostrikov VM, Vikhreva OV, Zimina IS, Kolomeets NS, Orlovskaya DD (2007) The role of oligodendrocyte pathology in schizophrenia. Int J Neuropsychopharmacol 10:537–545

    Article  CAS  PubMed  Google Scholar 

  • Uhrig S, Hirth N, Broccoli L, von Wilmsdorff M, Bauer M, Sommer C, Zink M, Steiner J, Frodl T, Malchow B, Falkai P, Spanagel R, Hansson AC, Schmitt A (2016) Schizophr Res 177(1–3):59–66. https://doi.org/10.1016/j.schres.2016.04.019

    Article  PubMed  Google Scholar 

  • Vadnie CA, McClun CA (2017) Circadian rhythm disturbances in mood disorders: insights into the role of the suprachiasmatic nucleus. Neural Plast 2017:1504507. https://doi.org/10.1155/2017/1504507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vale W, Rivier C, Brown M (1977) Regulatory peptides of the hypothalamus. Annu Rev Physiol 39:473–527

    Article  CAS  PubMed  Google Scholar 

  • Wahren, W (1952) The changes of hypothalamic nuclei in schizophrenia. In Proceedings of the first International Congress of Neuropathology, 1952, Vol. 3, Rosenberg and Sellier, Torino, 1952, pp. 660–673

  • Wallis MG, Lankford MF, Keller SR (2007) Vasopressin is a physiological substrate for the insulin-regulated aminopeptidase IRAP. Am J Physiol Endocrinol Metab 293:E1092–E1102

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Jie W, Liu JH, Yang JM Gao TM (2017) An astroglial basis of major depressive disorder? An overview. Glia 65:1227–1250. https://doi.org/10.1002/glia.23143

    Article  PubMed  Google Scholar 

  • Wang SS, Kamphuis W, Huitinga I, Zhou JN, Swaab DF (2008) Gene expression analysis in the hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances. Mol Psychiatry 13:786–799

    Article  CAS  PubMed  Google Scholar 

  • Waters RP, Rivalan M, Bangasser DA, Deussing JM, Ising M, Wood SK, Holsboer F, Summers CH (2015) Evidence for the role of corticotropin-releasing factor in major depressive disorder. Neurosci Biobehav Rev 58:63–78. https://doi.org/10.1016/j.neubiorev.2015.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Ge T, Leng Y, Pan Z, Fan F, Yang F, Cui R (2017) The role of neural plasticity in depression: from hippocampus to prefrontal cortex. Neural Plast 2017:6871089, 11 pages. https://doi.org/10.1155/2017/6871089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiegant VM, Verhoef CJ, Burbach JP, de Wied D (1988) Increased concentration of alpha- and gamma-endorphin in post mortem hypothalamic tissue of schizophrenic patients. Life Sci 42:1733–1742

    Article  CAS  PubMed  Google Scholar 

  • Wittmann W, Schunk E, Rosskothen I, Gaburro S, Singewald N, Herzog H, Schwarzer C (2009) Prodynorphin-derived peptides are critical modulators of anxiety and regulate neurochemistry and corticosterone. Neuropsychopharmacology 34:775–785. https://doi.org/10.1038/npp.2008.142

    Article  CAS  PubMed  Google Scholar 

  • Wu YH, Ursinus J, Zhou JN, Scheer FA, Ai-Min B, Jockers R, van Heerikhuize J, Swaab DF (2013) Alterations of melatonin receptors MT1 and MT2 in the hypothalamic suprachiasmatic nucleus during depression. J Affect Disord 148:357–367. https://doi.org/10.1016/j.jad.2012.12.025

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Balesar R, Lu J, Farajnia S, Zhu Q, Huang M, Bao AM, Swaab DF (2017) Brain Struct Funct 222:4079–4088. https://doi.org/10.1007/s00429-017-1442-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Dorsky RI (2017) Development of the hypothalamus: conservation, modification and innovation. Development 144:1588–1599. https://doi.org/10.1242/dev.139055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young EA, Korszun A (2002) The hypothalamic-pituitary-gonadal axis in mood disorders. Endocrinol Metab Clin N Am 31(1):63–78

    Article  CAS  Google Scholar 

  • Zahajszky J, Dickey CC, McCarley RW, Fischer IA, Nestor P, Kikinis R, Shenton ME (2001) A quantitative MR measure of the fornix in schizophrenia. Schizophr Res 47:87–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Wang H, Luan S, Yang S, Wang Z, Wang J, Zhao H (2017) Altered volume and functional connectivity of the habenula in schizophrenia. Front Hum Neurosci 11:636. https://doi.org/10.3389/fnhum.2017.00636. eCollection 2017

  • Zhao H, Wei T, Li X, Ba T (2017) Early life adversity induced third ventricular enlargement in young adult male patients suffered from major depressive disorder: a study of brain morphology. Folia Morphol (Warsz). https://doi.org/10.5603/FM.a2017.0113

  • Zhou JN, Riemersma RF, Unmehopa UA, Hoogendijk WJ, van Heerikshuize JJ, Hofman MA, Swaab DJ (2001) Alterations in arginine vasopressin neurons in the supraoptic nucleus in depression. Arch Gen Psychiatry 58:665–662

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Gert Bernstein.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernstein, HG., Dobrowolny, H., Bogerts, B. et al. The hypothalamus and neuropsychiatric disorders: psychiatry meets microscopy. Cell Tissue Res 375, 243–258 (2019). https://doi.org/10.1007/s00441-018-2849-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2849-3

Keywords

Navigation