Advertisement

Cell and Tissue Research

, Volume 374, Issue 2, pp 205–216 | Cite as

Roles of autophagy in controlling stem cell identity: a perspective of self-renewal and differentiation

  • Areechun Sotthibundhu
  • Wilasinee Promjuntuek
  • Min Liu
  • Sanbing Shen
  • Parinya NoisaEmail author
Review

Abstract

Autophagy is crucial for the removal of dysfunctional organelles and protein aggregates and for maintaining stem cell homeostasis, which includes self-renewal, cell differentiation and somatic reprogramming. Loss of self-renewal capacity and pluripotency is a major obstacle to stem cell-based therapies. It has been reported that autophagy regulates stem cells under biological stimuli, starvation, hypoxia, generation of reactive oxygen species (ROS) and cellular senescence. On the one hand, autophagy is shown to play roles in self-renewal by co-function with the ubiquitin-proteasome system (UPS) to promote pluripotency-associated proteins (NANOG, OCT4 and SOX2) in human embryonic stem cells (hESCs). On the other hand, autophagy activity acts as cell reprogramming processes that play an important role for clearance fate determination and upregulates neural and cardiac differentiation. Deregulation of autophagy triggers protein disorders such as neurodegenerative cardiac/muscle diseases and cancer. Therefore, understanding of the roles of the autophagy in stem cell renewal and differentiation may benefit therapeutic development for a range of human diseases.

Keywords

Autophagy Stem cells Self-renewal Differentiation Brain development 

Notes

Acknowledgements

PN was supported by the Suranaree University of Technology (SUT), the Office of the Higher Education Commission under the NRU project of Thailand. AS was supported by a grant from the Chulabhorn International College of Medicine Research Fund 2016.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aymard E, Barruche V, Naves T, Bordes S, Closs B, Verdier M, Ratinaud MH (2011) Autophagy in human keratinocytes: an early step of the differentiation? Exp Dermatol 20:263–268CrossRefGoogle Scholar
  2. Bayod S, Del Valle J, Canudas AM, Lalanza JF, Sanchez-Roige S, Camins A, Escorihuela RM, Pallas M (2011) Long-term treadmill exercise induces neuroprotective molecular changes in rat brain. J Appl Physiol (1985) 111:1380–1390CrossRefGoogle Scholar
  3. Bengzon J, Kokaia Z, Elmer E, Nanobashvili A, Kokaia M, Lindvall O (1997) Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci U S A 94:10432–10437CrossRefGoogle Scholar
  4. Bergmann O, Liebl J, Bernard S, Alkass K, Yeung MS, Steier P, Kutschera W, Johnson L, Landen M, Druid H, Spalding KL, Frisen J (2012) The age of olfactory bulb neurons in humans. Neuron 74:634–639CrossRefGoogle Scholar
  5. Chen T, Shen L, Yu J, Wan H, Guo A, Chen J (2011) Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10:908–911CrossRefGoogle Scholar
  6. Chen Y, Zhao L, Tian X, Liu T, Zhong J, Sun L, Liu J (2013) Autophagy induced by the withdrawal of mitogens promotes neurite extension in rat neural stem cells. J Biochem Mol Toxicol 27:351–356CrossRefGoogle Scholar
  7. Chin TY, Kao CH, Wang HY, Huang WP, Ma KH, Chueh SH (2010) Inhibition of the mammalian target of rapamycin promotes cyclic AMP-induced differentiation of NG108-15 cells. Autophagy 6:1139–1156CrossRefGoogle Scholar
  8. Chung KM, Yu SW (2013) Interplay between autophagy and programmed cell death in mammalian neural stem cells. BMB Rep 46:383–390CrossRefGoogle Scholar
  9. Domínguez L, Schlosser G, S S (2015) Expression of a novel serine/threonine kinase gene, Ulk4, in neural progenitors during Xenopus laevis forebrain development. Neuroscience 290:61–79CrossRefGoogle Scholar
  10. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461CrossRefGoogle Scholar
  11. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317CrossRefGoogle Scholar
  12. Fang B, Xiao H (2014) Rapamycin alleviates cisplatin-induced ototoxicity in vivo. Biochem Biophys Res Commun 448:443–447CrossRefGoogle Scholar
  13. Fidaleo M, Cavallucci V, Pani G (2017) Nutrients, neurogenesis and brain ageing: from disease mechanisms to therapeutic opportunities. Biochem PharmacolGoogle Scholar
  14. Filas BA, Shui YB, Beebe DC (2013) Computational model for oxygen transport and consumption in human vitreous. Invest Ophthalmol Vis Sci 54:6549–6559CrossRefGoogle Scholar
  15. Fishwick KJ, Li RA, Halley P, Deng P, Storey KG (2010) Initiation of neuronal differentiation requires PI3-kinase/TOR signalling in the vertebrate neural tube. Dev Biol 338:215–225CrossRefGoogle Scholar
  16. Garza-Lombo C, Gonsebatt ME (2016) Mammalian target of rapamycin: its role in early neural development and in adult and aged brain function. Front Cell Neurosci 10:157CrossRefGoogle Scholar
  17. Gong J, Gu H, Zhao L, Wang L, Liu P, Wang F, Xu H, Zhao T (2018) Phosphorylation of ULK1 by AMPK is essential for mouse embryonic stem cell self-renewal and pluripotency. Cell Death Dis 9:38CrossRefGoogle Scholar
  18. Guan J-L, Simon AK, Prescott M, Menendez JA, Liu F, Wang F, wang C, Wolvetang E, Martin Av, Zhang J (2013) Autophagy in stem cells. AutophagyGoogle Scholar
  19. Guo D, Teng Q, Ji C (2011) NOTCH and phosphatidylinositide 3-kinase/phosphatase and tensin homolog deleted on chromosome ten/AKT/mammalian target of rapamycin (mTOR) signaling in T-cell development and T-cell acute lymphoblastic leukemia. Leuk Lymphoma 52:1200–1210CrossRefGoogle Scholar
  20. Ha S, Jeong SH, Yi K, Chung KM, Hong CJ, Kim SW, Kim EK, Yu SW (2017) Phosphorylation of p62 by AMP-activated protein kinase mediates autophagic cell death in adult hippocampal neural stem cells. J Biol Chem 292:13795–13808CrossRefGoogle Scholar
  21. Harnett MM, Pineda MA, Latré de Laté P, Eason RJ, Besteiro S, Harnett W, G L (2017) From Christian de Duve to Yoshinori Ohsumi: more to autophagy than just dining at home. Biom J 40:9–22Google Scholar
  22. He J, Kang L, Wu T, Zhang J, Wang H, H G (2012) An elaborate regulation of mammalian target of rapamycin activity is required for somatic cell reprogramming induced by defined transcription factors. Stem Cells Dev 21:2630–2641CrossRefGoogle Scholar
  23. Hurley JH, BA S (2014) Atomistic autophagy: the structures of cellular self-digestion. Cell 157:300–311CrossRefGoogle Scholar
  24. Itakura E, Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764–776CrossRefGoogle Scholar
  25. Jang JE, Eom JI, Jeung HK, Cheong JW, Lee JY, Kim JS, Min YH (2017) Targeting AMPK-ULK1-mediated autophagy for combating BET inhibitor resistance in acute myeloid leukemia stem cells. Autophagy 13:761–762CrossRefGoogle Scholar
  26. Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A 98:4710–4715CrossRefGoogle Scholar
  27. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, DH K (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20:1992–2003CrossRefGoogle Scholar
  28. Ka M, Condorelli G, Woodgett JR, Kim WY (2014) mTOR regulates brain morphogenesis by mediating GSK3 signaling. Development 141:4076–4086CrossRefGoogle Scholar
  29. Kempermann G (2002) Neuronal stem cells and adult neurogenesis. Ernst Schering Res Found Workshop:17–28Google Scholar
  30. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141CrossRefGoogle Scholar
  31. Kim JY, Duan X, Liu CY, Jang MH, Guo JU, Pow-anpongkul N, Kang E, Song H, Ming GL (2009) DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 63:761–773CrossRefGoogle Scholar
  32. Kim T, Vemuganti R (2017) Mechanisms of Parkinson’s disease-related proteins in mediating secondary brain damage after cerebral ischemia. J Cerebral Blood Flow MetabGoogle Scholar
  33. Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen EL, Finkbeiner S, Fueyo-Margareto J, Gewirtz D, Jaattela M, Kroemer G, Levine B, Melia TJ, Mizushima N, Rubinsztein DC, Simonsen A, Thorburn A, Thumm M, Tooze SA (2011) A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 7:1273–1294CrossRefGoogle Scholar
  34. Komatsu M, Kominami E, Tanaka K (2006) Autophagy and neurodegeneration. Autophagy 2:315–317CrossRefGoogle Scholar
  35. Larsson N-G, Institutet MGMK (2016) Scientific background discoveries of mechanisms for autophagyGoogle Scholar
  36. Lee EJ, C T (2011) The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy 7:689–695CrossRefGoogle Scholar
  37. Lee JW, Park S, Takahashi Y, Wang HG (2010) The association of AMPK with ULK1 regulates autophagy. PLoS One 5:e15394CrossRefGoogle Scholar
  38. Lee Y, Jung J, Cho KJ, Lee S-K, Park J-W, Oh I-H, Kim GJ (2013) Increased SCF/c-kit by hypoxia promotes autophagy of human placental chorionic plate-derived mesenchymal stem cells via regulating the phosphorylation of mTOR. J Cell BiochemGoogle Scholar
  39. Liu H, He Z, von Rutte T, Yousefi S, Hunger R (2013) Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci Transl MedGoogle Scholar
  40. Liu M, Guan Z, Shen Q, Flinter F, Domínguez L, Ahn JW, Collier DA, O'Brien T (2016) S S. Ulk4 regulates neural stem cell pool stem cell 34:2318–2331Google Scholar
  41. Liu M, Xu P, O'Brien T, S S (2017) Multiple roles of Ulk4 in neurogenesis and brain function. In: Neurogenesis (Austin) 4Google Scholar
  42. Lopez NM, Athonvarangkul D, Singh R (2015) Autophagy and aging. Adv Exp Med BiolGoogle Scholar
  43. Madill M, McDonagh K, Ma J, Vajda A, McLoughlin P, O'Brien T, Hardiman O (2017) Amyotrophic lateral sclerosis patient iPSC-derived astrocytes impair autophagy via non-cell autonomous mechanisms. In: Mil brain 10Google Scholar
  44. Maloverjan A, Piirsoo M, Kasak L, Peil L, Østerlund T, P K (2010a) Dual function of UNC-51-like kinase 3 (Ulk3) in the sonic hedgehog signaling pathway. J Biol Chem 285:30079–30090CrossRefGoogle Scholar
  45. Maloverjan A, Piirsoo M, Michelson P, Kogerman P, T O (2010b) Identification of a novel serine/threonine kinase ULK3 as a positive regulator of hedgehog pathway. Exp Cell Res 316:627–637CrossRefGoogle Scholar
  46. McAlpine F, Williamson LE, Tooze SA, EY C (2013) Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2. Autophagy 9:361–373CrossRefGoogle Scholar
  47. McCarty MN, Klein PS (2017) Autophagy is a signature of a signaling network that maintains hematopoietic stem cells. Plos oneGoogle Scholar
  48. McKnight NC, Zhong Y, Wold MS, Gong S, Phillips GR, Dou Z, Zhao Y, Heintz N, Zong WX, Z Y (2014) Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex. In: PLoS Genet 10Google Scholar
  49. Menendez J, Vellon L, Oliveras-Ferraros C, Cufi S, Vazquez Martin A (2011) mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging. Cell CycleGoogle Scholar
  50. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741CrossRefGoogle Scholar
  51. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111CrossRefGoogle Scholar
  52. Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273:3963–3966CrossRefGoogle Scholar
  53. Ojha R, Bhattacharyya S, Singh SK (2015) Autophagy in cancer stem cells: a potential link between chemoresistance, recurrence, and metastasis. BioResearch 4.1:Google Scholar
  54. Pan H, Cai N, Li M, Liu G-H, Belmonte JCl (2013a) Autophagic control of cell 'stemness'. EMBO Mol medGoogle Scholar
  55. Pan H, Cai N, Li M, Liu GH, Izpisua Belmonte JC (2013b) Autophagic control of cell ‘stemness’. EMBO Mol Med 5:327–331CrossRefGoogle Scholar
  56. Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17:3727–3738CrossRefGoogle Scholar
  57. Raman L, Kong X, Kernie SG (2013) Pharmacological inhibition of the mTOR pathway impairs hippocampal development in mice. Neurosci Lett 541:9–14CrossRefGoogle Scholar
  58. Rodolfo C, Bartolomeo SD, Cecconi F (2016) Autophagy in stem and progenitor cells. Cellular and Molecular Life SciencesGoogle Scholar
  59. Sadler TW (2005) Embryology of neural tube development. Am J Med Genet C Semin Med Genet 135C:2–8CrossRefGoogle Scholar
  60. Salemi S, Fey M, Yousefi S, Constantinescu MA, Simon H-U (2012a) Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell ResearchGoogle Scholar
  61. Salemi S, Yousefi S, Constantinescu MA, Fey MF, Simon HU (2012b) Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res 22:432–435CrossRefGoogle Scholar
  62. Sandri M, Coletto L, Grumati P, Bonaldo P (2013) Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. Cell Biol DisGoogle Scholar
  63. Sbrana FV, Columbaro M, Cortini M, Milito AD, Avnet S, Baldini N, Perut F (2016) The role of autophagy in the maintenance of stemness and differentiation of mesenchymal stem cells. Stem Cell Rev and RepGoogle Scholar
  64. Sekito T, Kawamata T, Ichikawa R, Suzuki K, Y O (2009) Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells 14:525–538CrossRefGoogle Scholar
  65. Shin JY, Park hJ, Kim hN, Oh sH, Bae J-s (2014) Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. AutophagyGoogle Scholar
  66. Song J, Christian KM, Ming GL, Song H (2012) Modification of hippocampal circuitry by adult neurogenesis. Dev Neurobiol 72:1032–1043CrossRefGoogle Scholar
  67. Sotthibundhu A, McDonagh K, von Kriegsheim A, Garcia-Munoz A, Klawiter A, Thompson K, Chauhan KD, Krawczyk J, McInerney V, Dockery P, Devine MJ, Kunath T, Barry F, O'Brien T, Shen S (2016) Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells. Stem Cell Res Ther 7:166CrossRefGoogle Scholar
  68. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisen J (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227CrossRefGoogle Scholar
  69. Takahashi T, Shimizu K, Shimazaki K, Toda H, Nibuya M (2014) Environmental enrichment enhances autophagy signaling in the rat hippocampus. Brain Res 1592:113–123CrossRefGoogle Scholar
  70. Thoresen SB, Pedersen NM, Liestol K, H S (2010) A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic. Exp Cell Res 316:3368–3378CrossRefGoogle Scholar
  71. Tomoda T, Kim JH, Zhan C, ME H (2004) Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev 18:541–558CrossRefGoogle Scholar
  72. Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174CrossRefGoogle Scholar
  73. Urban N, Guillemot F (2014) Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front Cell Neurosci 8:396CrossRefGoogle Scholar
  74. Vazquez P, Arroba AI, Cecconi F, de la Rosa EJ, Boya P, de Pablo F (2012) Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells. Autophagy 8:187–199CrossRefGoogle Scholar
  75. Wang S, Xia P, Ye B, Huang G, Liu J, Z F (2013) Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency. Cell Stem Cell 13:617–625CrossRefGoogle Scholar
  76. Wang S, Xia P, Fan Z, Rehm M (2015) Autophagy and cell reprogramming. Cell Mol Life SciGoogle Scholar
  77. Westerholz S, de Lima AD, Voigt T (2013) Thyroid hormone-dependent development of early cortical networks: temporal specificity and the contribution of trkB and mTOR pathways. Front Cell Neurosci 7:121CrossRefGoogle Scholar
  78. Xi Y, Dhaliwal JS, Ceizar M, Vaculik M, Kumar KL, Lagace DC (2016) Knockout of Atg5 delays the maturation and reduces the survival of adult-generated neurons in the hippocampus. Cell Death Dis 7:e2127CrossRefGoogle Scholar
  79. Yagita Y, Kitagawa K, Ohtsuki T, Takasawa K, Miyata T, Okano H, Hori M, Matsumoto M (2001) Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke 32:1890–1896CrossRefGoogle Scholar
  80. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822CrossRefGoogle Scholar
  81. Yazdankhah M, Farioli-Vecchioli S, Tonchev AB, Stoykova A, Cecconi F (2014) The autophagy regulators Ambra1 and Beclin 1 are required for adult neurogenesis in the brain subventricular zone. Cell Death Dis 5:e1403CrossRefGoogle Scholar
  82. Yun HC, Kyu MH, Dong KK, Joon SL, Sang HL, Kyeng WC, Jungho K, Yong MH (2013) Autophagy regulates homeostasis of pluripotency associated proteins in hESCs. Stem Cells DevGoogle Scholar
  83. Zeng M, Zhou J-N (2008a) Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells. Cell SignalGoogle Scholar
  84. Zeng M, Zhou JN (2008b) Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells. Cell Signal 20:659–665CrossRefGoogle Scholar
  85. Zhang Z, Yang M, Wang Y, Wang L, Jin Z, Ding L, Zhang L, Zhang L, Jiang W, Gao G, Yang J, Lu B, Cao F, Hu T (2016) Autophagy regulates the apoptosis of bone marrow-derived mesenchymal stem cells under hypoxic condition via AMP-activated protein kinase/mammalian target of rapamycin pathway. Cell Biol Int 40:671–685CrossRefGoogle Scholar
  86. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660CrossRefGoogle Scholar
  87. Zhao Y, Huang Q, Yang J, Lou M, Wang A, Dong J, Qin Z, Zhang T (2010) Autophagy impairment inhibits differentiation of glioma stem/progenitor cells. Brain Res 1313:250–258CrossRefGoogle Scholar
  88. Zhong L, Zhou J, Chen X, Liu J, Liu Z, Chen Y, Bai Y (2017) Quantitative proteomics reveals EVA1A-related proteins involved in neuronal differentiation. Proteomics 17CrossRefGoogle Scholar
  89. Zhong Y, Morris DH, Jin L, Patel MS, Karunakaran SK, Fu YJ, Matuszak EA, Weiss HL, Chait BT, QJ W (2014) Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels. J Biol Chem 289:26021–26037CrossRefGoogle Scholar
  90. Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Z Y (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11:468–476CrossRefGoogle Scholar
  91. Zhou X, Babu JR, da Silva S, Shu Q, Graef IA, Oliver T, Tomoda T, Tani T, Wooten MW, F W (2007) Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc Natl Acad Sci U S A 104:5842–5847CrossRefGoogle Scholar
  92. Zhoua J, Sua P, Wanga L, Chena J, Zimmermannc M, Genbacevd O, Afonjae O, Hornec MC, Tanakab T, Duang E, Fisherd SJ, Liaoh J, Chena J, Wanga F (2009) mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. PNAS 106Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chulabhorn International College of MedicineThammasat UniversityRangsitThailand
  2. 2.Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
  3. 3.Regenerative Medicine Institute, Biomedical Sciences Building, School of MedicineNational University of Ireland (NUI) GalwayGalwayIreland

Personalised recommendations