Advertisement

Cell and Tissue Research

, Volume 373, Issue 2, pp 379–393 | Cite as

Overexpression of FOXQ1 enhances anti-senescence and migration effects of human umbilical cord mesenchymal stem cells in vitro and in vivo

  • Tao Zhang
  • Pan Wang
  • Yanxia Liu
  • Jiankang Zhou
  • Zhenqing Shi
  • Kang Cheng
  • Tuanjie Huang
  • Xinxin Wang
  • Greta Luyuan Yang
  • Bo Yang
  • Shanshan Ma
  • Fangxia Guan
Regular Article

Abstract

Mesenchymal stem cells (MSCs) are unique precursor cells characterized by active self-renewal and differentiation potential. These cells offer the advantages of ease of isolation and limited ethical issues as a resource and represent a promising cell therapy for neurodegenerative diseases. However, replicative senescence during cell culture as well as low efficiency of cell migration and differentiation after transplantation are major obstacles. In our previous study, we found that FOXQ1 binds directly to the SIRT1 promoter to regulate cellular senescence and also promotes cell proliferation and migration in many tumor cell lines. Currently, little is known about the effects of FOXQ1 on normal somatic cells. Therefore, we examine the effects of FOXQ1 on senescence and migration of MSCs. Lentiviral vector-mediated overexpression of FOXQ1 in human umbilical cord mesenchymal stem cells (hUC-MSCs) resulted in enhanced cell proliferation and viability. Furthermore, the expression of proteins and markers positively associated with senescence (p16, p21, p53) was reduced, whereas expression of proteins negatively associated with senescence (SIRT1, PCNA) was promoted. Following transplantation of hUC-MSCs overexpressing FOXQ1 in an animal model of Alzheimer’s disease (APPV717I transgenic mice) resulted in amelioration of the effects of Alzheimer’s disease (AD) on cognitive function and pathological senescence accompanied the increased numbers of hUC-MSCs in the AD brain. In conclusion, FOXQ1 overexpression promotes anti-senescence and migration of hUC-MSCs in vitro and in vivo. These findings also suggest that this strategy may contribute to optimization of the efficiency of stem cell therapy.

Keywords

FOXQ1 Overexpression Human umbilical cord mesenchymal stem cells Anti-senescence Migration 

Notes

Acknowledgments

All plasmids (Framework plasmid pHBLV-puro and packaging plasmids psPAX2, pMD2.G) were gifts from the Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology Professor Tanjun Tong.

This work was supported by the Natural Science Foundation of China (NSFC 81471306 and 81501200), China Postdoctoral Science Foundation (2015M572122), Innovative Research Team in Science and Technology of the University of Henan Province (15IRTSTHN022), the Plan for Scientific Innovation Talent of Henan Province (154200510008), the Key Research Project of Higher Education of Henan Province (17A310012) and the Research Fund for the Doctoral Program of Higher Education of China (20114101110004).

Compliance with ethical standards

Author Disclosure Statement.

The authors declare that they have no conflict of interest.

References

  1. Abba M, Patil N, Rasheed K, Nelson LD, Mudduluru G, Leupold JH, Allgayer H (2013) Unraveling the role of FOXQ1 in colorectal cancer metastasis. Mol Cancer Res: MCR 11:1017–1028CrossRefPubMedGoogle Scholar
  2. Ando K, Maruko-Otake A, Ohtake Y, Hayashishita M, Sekiya M, Iijima KM (2016) Stabilization of microtubule-unbound tau via tau phosphorylation at Ser262/356 by Par-1/MARK contributes to augmentation of AD-related phosphorylation and Abeta42-induced tau toxicity. PLoS Genet 12:e1005917CrossRefPubMedPubMedCentralGoogle Scholar
  3. Armesilla-Diaz A, Elvira G, Silva A (2009) p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells. Exp Cell Res 315:3598–3610CrossRefPubMedGoogle Scholar
  4. Benayoun BA, Caburet S, Veitia RA (2011) Forkhead transcription factors: key players in health and disease. Trends in genetics: TIG 27:224–232CrossRefPubMedGoogle Scholar
  5. Chen TS, Lim SK (2013) Measurement of precursor miRNA in exosomes from human ESC-derived mesenchymal stem cells. Methods Mol Biol 1024:69–86CrossRefPubMedGoogle Scholar
  6. Conover JC, Todd KL (2016) Development and aging of a brain neural stem cell niche. Exp Gerontol 94:9–13CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noel D (2017) Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep 7:16214CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cui Y, Ma S, Zhang C, Cao W, Liu M, Li D, Lv P, Xing Q, Qu R, Yao N, Yang B, Guan F (2017) Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav Brain Res 320:291–301CrossRefPubMedGoogle Scholar
  9. Diao S, Lin X, Wang L, Dong R, Du J, Yang D, Fan Z (2017) Analysis of gene expression profiles between apical papilla tissues, stem cells from apical papilla and cell sheet to identify the key modulators in MSCs niche. Cell Prolif.  https://doi.org/10.1111/cpr.12337
  10. Ellis SJ, Tanentzapf G (2010) Integrin-mediated adhesion and stem-cell-niche interactions. Cell Tissue Res 339:121–130CrossRefPubMedGoogle Scholar
  11. Fandel TM, Trivedi A, Nicholas CR, Zhang H, Chen J, Martinez AF, Noble-Haeusslein LJ, Kriegstein AR (2016) Transplanted human stem cell-derived interneuron precursors mitigate mouse bladder dysfunction and central neuropathic pain after spinal cord injury. Cell Stem Cell 19:544–557CrossRefPubMedGoogle Scholar
  12. Feng J, Xu L, Ni S, Gu J, Zhu H, Wang H, Zhang S, Zhang W, Huang J (2014) Involvement of FoxQ1 in NSCLC through regulating EMT and increasing chemosensitivity. Oncotarget 5:9689–9702PubMedPubMedCentralGoogle Scholar
  13. Gatta E, Lefebvre T, Gaetani S, dos Santos M, Marrocco J, Mir AM, Cassano T, Maccari S, Nicoletti F, Mairesse J (2016) Evidence for an imbalance between tau O-GlcNAcylation and phosphorylation in the hippocampus of a mouse model of Alzheimer’s disease. Pharmacol Res 105:186–197CrossRefPubMedGoogle Scholar
  14. Gu Y, Li T, Ding Y, Sun L, Tu T, Zhu W, Hu J, Sun X (2016) Changes in mesenchymal stem cells following long-term culture in vitro. Mol Med Rep 13:5207–5215CrossRefPubMedGoogle Scholar
  15. Gu Z, Jiang J, Xia Y, Yue X, Yan M, Tao T, Cao X, Da Z, Liu H, Liu H, Miao Y, Li L, Wang Z (2013) p21 is associated with the proliferation and apoptosis of bone marrow-derived mesenchymal stem cells from non-obese diabetic mice. Exp Clin Endocrinol Diabetes : Off J German Soc Endocrinol German Diabetes Assoc 121:607–613CrossRefGoogle Scholar
  16. Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, Xu Q, Oberheim NA, Bekar L, Betstadt S, Silva AJ, Takano T, Goldman SA, Nedergaard M (2013) Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12:342–353CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hua J, He ZG, Qian DH, Lin SP, Gong J, Meng HB, Yang TS, Sun W, Xu B, Zhou B, Song ZS (2014) Angiopoietin-1 gene-modified human mesenchymal stem cells promote angiogenesis and reduce acute pancreatitis in rats. Int J Clin Exp Pathol 7:3580–3595PubMedPubMedCentralGoogle Scholar
  18. Huang CE, Hu FW, Yu CH, Tsai LL, Lee TH, Chou MY, Yu CC (2014) Concurrent expression of Oct4 and Nanog maintains mesenchymal stem-like property of human dental pulp cells. Int J Mol Sci 15:18623–18639CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kaneda H, Arao T, Tanaka K, Tamura D, Aomatsu K, Kudo K, Sakai K, De Velasco MA, Matsumoto K, Fujita Y, Yamada Y, Tsurutani J, Okamoto I, Nakagawa K, Nishio K (2010) FOXQ1 is overexpressed in colorectal cancer and enhances tumorigenicity and tumor growth. Cancer Res 70:2053–2063CrossRefPubMedGoogle Scholar
  20. Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, Takeshita F, Sakai Y, Kuroda M, Ochiya T (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kim S, Bi X, Czarny-Ratajczak M, Dai J, Welsh DA, Myers L, Welsch MA, Cherry KE, Arnold J, Poon LW, Jazwinski SM (2012) Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology 13:119–131CrossRefPubMedGoogle Scholar
  22. Lai RC, Tan SS, Teh BJ, Sze SK, Arslan F, de Kleijn DP, Choo A, Lim SK (2012) Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics 2012:971907CrossRefPubMedPubMedCentralGoogle Scholar
  23. Laird DJ, von Andrian UH, Wagers AJ (2008) Stem cell trafficking in tissue development, growth, and disease. Cell 132:612–630CrossRefPubMedGoogle Scholar
  24. Li Y, Zhang Y, Yao Z, Li S, Yin Z, Xu M (2016) Forkhead box Q1: a key player in the pathogenesis of tumors (review). Int J Oncol 49:51–58CrossRefPubMedGoogle Scholar
  25. Liu Z, Li J, Li P, Bai M, Guo Y, Han M, Zhang F, Ahmed R, Jin S (2016) Stem cell transplantation for the treatment of liver diseases: a systematic review and meta-analysis. Turk J Gastroenterol: Off J Turk Soc Gastroenterol 27:499–508CrossRefGoogle Scholar
  26. Madonna R, Taylor DA, Geng YJ, De Caterina R, Shelat H, Perin EC, Willerson JT (2013) Transplantation of mesenchymal cells rejuvenated by the overexpression of telomerase and myocardin promotes revascularization and tissue repair in a murine model of hindlimb ischemia. Circ Res 113:902–914CrossRefPubMedGoogle Scholar
  27. Meng F, Speyer CL, Zhang B, Zhao Y, Chen W, Gorski DH, Miller FR, Wu G (2015) PDGFRalpha and beta play critical roles in mediating Foxq1-driven breast cancer stemness and chemoresistance. Cancer Res 75:584–593CrossRefPubMedGoogle Scholar
  28. Moshaverinia A, Chen C, Xu X, Ansari S, Zadeh HH, Schricker SR, Paine ML, Moradian-Oldak J, Khademhosseini A, Snead ML, Shi S (2015) Regulation of the stem cell-host immune system interplay using hydrogel coencapsulation system with an anti-inflammatory drug. Adv Funct Mater 25:2296–2307CrossRefPubMedPubMedCentralGoogle Scholar
  29. Naaldijk Y, Jager C, Fabian C, Leovsky C, Bluher A, Rudolph L, Hinze A, Stolzing A (2016) Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS1 Alzheimer mice. Neuropathol Appl Neurobiol 43:299–314CrossRefPubMedGoogle Scholar
  30. Nijnik A, Woodbine L, Marchetti C, Dawson S, Lambe T, Liu C, Rodrigues NP, Crockford TL, Cabuy E, Vindigni A, Enver T, Bell JI, Slijepcevic P, Goodnow CC, Jeggo PA, Cornall RJ (2007) DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447:686–690CrossRefPubMedGoogle Scholar
  31. Oh SH, Kim HN, Park HJ, Shin JY, Lee PH (2015) Mesenchymal stem cells increase hippocampal neurogenesis and neuronal differentiation by enhancing the Wnt signaling pathway in an Alzheimer’s disease model. Cell Transplant 24:1097–1109CrossRefPubMedGoogle Scholar
  32. Pei Y, Wang P, Liu H, He F, Ming L (2015) FOXQ1 promotes esophageal cancer proliferation and metastasis by negatively modulating CDH1. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 74:89-94Google Scholar
  33. Piccinato CA, Sertie AL, Torres N, Ferretti M, Antonioli E (2015) High OCT4 and low p16(INK4A) expressions determine in vitro lifespan of mesenchymal stem cells. Stem Cells Int 2015:369828CrossRefPubMedPubMedCentralGoogle Scholar
  34. Qiao Y, Jiang X, Lee ST, Karuturi RK, Hooi SC, Yu Q (2011) FOXQ1 regulates epithelial–mesenchymal transition in human cancers. Cancer Res 71:3076–3086CrossRefPubMedGoogle Scholar
  35. Rajput BS, Chakrabarti SK, Dongare VS, Ramirez CM, Deb KD (2015) Human umbilical cord mesenchymal stem cells in the treatment of Duchenne muscular dystrophy: safety and feasibility study in India. J Stem Cells 10:141–156PubMedGoogle Scholar
  36. Ruddy RM, Morshead CM (2017) Home sweet home: the neural stem cell niche throughout development and after injury. Cell Tissue Res.  https://doi.org/10.1007/s00441-017-2658-0
  37. Schallmoser K, Bartmann C, Rohde E, Bork S, Guelly C, Obenauf AC, Reinisch A, Horn P, Ho AD, Strunk D, Wagner W (2010) Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica 95:867–874CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wagner W, Bork S, Horn P, Krunic D, Walenda T, Diehlmann A, Benes V, Blake J, Huber FX, Eckstein V, Boukamp P, Ho AD (2009) Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One 4:e5846CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wang L, Wang L, Huang W, Su H, Xue Y, Su Z, Liao B, Wang H, Bao X, Qin D, He J, Wu W, So KF, Pan G, Pei D (2013) Generation of integration-free neural progenitor cells from cells in human urine. Nat Methods 10:84–89CrossRefPubMedGoogle Scholar
  40. Wang P, Lv C, Zhang T, Liu J, Yang J, Guan F, Hong T (2017) FOXQ1 regulates senescence-associated inflammation via activation of SIRT1 expression. Cell Death Dis 8:e2946CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wang Q, Yang Q, Wang Z, Tong H, Ma L, Zhang Y, Shan F, Meng Y, Yuan Z (2016a) Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton’s jelly as sources of cell immunomodulatory therapy. Human Vaccines Immunotherapeutics 12:85–96CrossRefPubMedGoogle Scholar
  42. Wang SC (2014) PCNA: a silent housekeeper or a potential therapeutic target? Trends Pharmacol Sci 35:178–186CrossRefPubMedGoogle Scholar
  43. Wang X, Ma S, Meng N, Yao N, Zhang K, Li Q, Zhang Y, Xing Q, Han K, Song J, Yang B, Guan F (2016b) Resveratrol exerts dosage-dependent effects on the self-renewal and neural differentiation of hUC-MSCs. Mol Cells 39:418–425CrossRefPubMedPubMedCentralGoogle Scholar
  44. Xia L, Huang W, Tian D, Zhang L, Qi X, Chen Z, Shang X, Nie Y, Wu K (2014) Forkhead box Q1 promotes hepatocellular carcinoma metastasis by transactivating ZEB2 and VersicanV1 expression. Hepatology 59:958–973CrossRefPubMedGoogle Scholar
  45. Yang H, Xie Z, Wei L, Yang H, Yang S, Zhu Z, Wang P, Zhao C, Bi J (2013) Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-beta deposition in an AbetaPP/PS1 transgenic mouse model. Stem Cell Res Ther 4:76CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yong KW, Pingguan-Murphy B, Xu F, Abas WA, Choi JR, Omar SZ, Azmi MA, Chua KH, Wan Safwani WK (2015) Phenotypic and functional characterization of long-term cryopreserved human adipose-derived stem cells. Sci Rep 5:9596CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15:4142–4157CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhang H, Meng F, Liu G, Zhang B, Zhu J, Wu F, Ethier SP, Miller F, Wu G (2011) Forkhead transcription factor foxq1 promotes epithelial–mesenchymal transition and breast cancer metastasis. Cancer Res 71:1292–1301CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zhang J, Li W, Dai S, Tai X, Jia J, Guo X (2015) FOXQ1 is overexpressed in laryngeal carcinoma and affects cell growth, cell cycle progression and cell invasion. Oncol Lett 10:2499–2504CrossRefPubMedPubMedCentralGoogle Scholar
  50. Zhang X, Wang L, Wang Y, Shi S, Zhu H, Xiao F, Yang J, Yang A, Hao X (2016) Inhibition of FOXQ1 induces apoptosis and suppresses proliferation in prostate cancer cells by controlling BCL11A/MDM2 expression. Oncol Rep 36:2349–2356CrossRefPubMedGoogle Scholar
  51. Zou Q, Wu M, Zhong L, Fan Z, Zhang B, Chen Q, Ma F (2016) Development of a Xeno-free feeder-layer system from human umbilical cord mesenchymal stem cells for prolonged expansion of human induced pluripotent stem cells in culture. PLoS One 11:e0149023CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tao Zhang
    • 1
  • Pan Wang
    • 2
  • Yanxia Liu
    • 1
  • Jiankang Zhou
    • 1
  • Zhenqing Shi
    • 1
  • Kang Cheng
    • 1
  • Tuanjie Huang
    • 1
  • Xinxin Wang
    • 2
  • Greta Luyuan Yang
    • 3
  • Bo Yang
    • 2
  • Shanshan Ma
    • 1
  • Fangxia Guan
    • 1
    • 2
  1. 1.School of Life SciencesZhengzhou UniversityZhengzhouChina
  2. 2.The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  3. 3.Stuyvesant High SchoolNew YorkUSA

Personalised recommendations