Skip to main content
Log in

Myogenic potential of mesenchymal stem cells isolated from porcine adipose tissue

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Advances in stem cell biology and materials science have provided a basis for developing tissue engineering methods to repair muscle injury. Among stem cell populations with potential to aid muscle repair, adipose-derived mesenchymal stem cells (ASC) hold great promise. To evaluate the possibility of using porcine ASC for muscle regeneration studies, we co-cultured porcine ASC with murine C2C12 myoblasts. These experiments demonstrated that porcine ASC display significant myogenic potential. Co-culture of ASC expressing green fluorescent protein (GFP) with C2C12 cells resulted in GFP+ myotube formation, indicating fusion of ASC with myoblasts to form myotubes. The presence of porcine lamin A/C positive nuclei in myotubes and RTqPCR analysis of porcine myogenin and desmin expression confirmed that myotube nuclei derived from ASC contribute to muscle gene expression. Co-culturing GFP+ASC with porcine satellite cells demonstrated enhanced myogenic capability of ASC, as the percentage of labeled myotubes increased compared to mouse co-cultures. Enhancing myogenic potential of ASC through soluble factor treatment or expansion of ASC with innate myogenic capacity should allow for their therapeutic use to regenerate muscle tissue lost to disease or injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andres V, Walsh K (1996) Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J Cell Biol 132:657–666

    Article  CAS  PubMed  Google Scholar 

  • Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159:123–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajek A, Drewa T, Joachimiak R, Spoz Z, Gagat M, Bodnar M, Debski R, Grzanka A, Marszalek A (2012) Myogenic differentiation of Mesenchymal stem cells is induced by striated muscle influences in vitro. Curr Signal Transd Ther 7:220–227

    Article  CAS  Google Scholar 

  • Berry SE, Liu J, Chaney EJ, Kaufman SJ (2007) Multipotential mesoangioblast stem cell therapy in the mdx/utrn−/− mouse model for Duchenne muscular dystrophy. Regen Med 2:275–288

    Article  CAS  PubMed  Google Scholar 

  • Bionaz M, Loor JJ (2007) Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. Physiol Genomics 29:312–319

    Article  CAS  PubMed  Google Scholar 

  • Burkin DJ, Kaufman SJ (1999) The alpha7beta1 integrin in muscle development and disease. Cell Tissue Res 296:183–190

    Article  CAS  PubMed  Google Scholar 

  • Cabot RA, Kuhholzer B, Chan AW, Lai L, Park KW, Chong KY, Schatten G, Murphy CN, Abeydeera LR, Day BN, Prather RS (2001) Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector. Anim Biotechnol 12:205–214

    Article  CAS  PubMed  Google Scholar 

  • Capetanaki Y, Milner DJ (1998) Desmin cytoskeleton in muscle integrity and function. Subcell Biochem 31:463–495

    CAS  PubMed  Google Scholar 

  • Cittadella Vigodarzere G, Mantero S (2014) Skeletal muscle tissue engineering: strategies for volumetric constructs. Front Physiol 5:362

  • Cossu G, Bianco P (2003) Mesoangioblasts — vascular progenitors for extravascular mesodermal tissues. Curr Opin Genet Dev 13:537–542

    Article  CAS  PubMed  Google Scholar 

  • De Angelis L, Berghella L, Coletta M, Lattanzi L, Zanchi M, Cusella-De Angelis MG, Ponzetto C, Cossu G (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147:869–878

    Article  PubMed  PubMed Central  Google Scholar 

  • de Windt TS, Saris DB, Slaper-Cortenbach IC, van Rijen MH, Gawlitta D, Creemers LB, de Weger RA, Dhert WJ, Vonk LA (2015) Direct cell-cell contact with Chondrocytes is a key mechanism in multipotent Mesenchymal Stromal cell-mediated Chondrogenesis. Tissue Eng Part A 21:2536–2547

    Article  PubMed  Google Scholar 

  • Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cossu G (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9:255–267

    Article  CAS  PubMed  Google Scholar 

  • Di Rocco G, Iachininoto MG, Tritarelli A, Straino S, Zacheo A, Germani A, Crea F, Capogrossi MC (2006) Myogenic potential of adipose-tissue-derived cells. J Cell Sci 119:2945–2952

    Article  PubMed  Google Scholar 

  • Dominguez AA, Lim WA, Qi LS (2016) Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17:5–15

    Article  CAS  PubMed  Google Scholar 

  • Doumit ME, Merkel RA (1992) Conditions for isolation and culture of porcine myogenic satellite cells. Tissue Cell 24:253–262

    Article  CAS  PubMed  Google Scholar 

  • Eom YW, Lee JE, Yang MS, Jang IK, Kim HE, Lee DH, Kim YJ, Park WJ, Kong JH, Shim KY, Lee JI, Kim HS (2011) Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts. Biochem Biophys Res Commun 408:167–173

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Maley M, Beilharz M, Grounds M (1996) Rapid death of injected myoblasts in myoblast transfer therapy. Muscle Nerve 19:853–860

    Article  CAS  PubMed  Google Scholar 

  • Forcales SV (2015) Potential of adipose-derived stem cells in muscular regenerative therapies. Front Aging Neurosci 7:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247

    Article  CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Piatetzky S 2nd, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390

    CAS  PubMed  Google Scholar 

  • Fuoco C, Rizzi R, Biondo A, Longa E, Mascaro A, Shapira-Schweitzer K, Kossovar O, Benedetti S, Salvatori ML, Santoleri S, Testa S, Bernardini S, Bottinelli R, Bearzi C, Cannata SM, Seliktar D, Cossu G, Gargioli C (2015) In vivo generation of a mature and functional artificial skeletal muscle. EMBO Mol Med 7:411–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimble JM, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369

    Article  PubMed  Google Scholar 

  • Gimble JM, Guilak F, Nuttall ME, Sathishkumar S, Vidal M, Bunnell BA (2008) In vitro differentiation potential of Mesenchymal stem cells. Transfus Med Hemother 35:228–238

    Article  PubMed  PubMed Central  Google Scholar 

  • Goudenege S, Pisani DF, Wdziekonski B, Di Santo JP, Bagnis C, Dani C, Dechesne CA (2009) Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Mol Ther 17:1064–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabowska I, Szeliga A, Moraczewski J, Czaplicka I, Brzoska E (2011) Comparison of satellite cell-derived myoblasts and C2C12 differentiation in two- and three-dimensional cultures: changes in adhesion protein expression. Cell Biol Int 35:125–133

    Article  CAS  PubMed  Google Scholar 

  • Grogan BF, Hsu JR (2011) Volumetric muscle loss. J Am Acad Orthop Surg 19(Suppl 1):S35–S37

    Article  PubMed  Google Scholar 

  • Harding J, Roberts RM, Mirochnitchenko O (2013) Large animal models for stem cell therapy. Stem Cell Res Ther 4:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Herzog EL, Van Arnam J, Hu B, Zhang J, Chen Q, Haberman AM, Krause DS (2007) Lung-specific nuclear reprogramming is accompanied by heterokaryon formation and Y chromosome loss following bone marrow transplantation and secondary inflammation. FASEB J 21:2592–2601

    Article  CAS  PubMed  Google Scholar 

  • Järvinen TAH, Järvinen TLN, Kääriäinen M, Kalimo H, Järvinen M (2005) Muscle injuries: biology and treatment. Am J Sports Med 33:745–764

    Article  PubMed  Google Scholar 

  • Järvinen T, Järvinen M, Kalimo H (2013) Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons J 3(4):337–345

  • Kemp K, Gordon D, Wraith DC, Mallam E, Hartfield E, Uney J, Wilkins A, Scolding N (2011) Fusion between human mesenchymal stem cells and rodent cerebellar Purkinje cells. Neuropathol Appl Neurobiol 37:166–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Kemp DM (2006) Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochem Biophys Res Commun 341:882–888

    Article  CAS  PubMed  Google Scholar 

  • Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, Marini R, van Blitterswijk CA, Mulligan RC, D’Amore PA, Langer R (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23:879–884

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, MH L, Schultheiss T, Choi J, Holtzer S, DiLullo C, Fischman DA, Holtzer H (1994) Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division: evidence for a conserved myoblast differentiation program in skeletal muscle. Cell Motil Cytoskeleton 29:1–19

    Article  CAS  PubMed  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meligy FY, Shigemura K, Behnsawy HM, Fujisawa M, Kawabata M, Shirakawa T (2012) The efficiency of in vitro isolation and myogenic differentiation of MSCs derived from adipose connective tissue, bone marrow, and skeletal muscle tissue. In Vitro Cell Dev Biol Anim 48:203–215

    Article  PubMed  Google Scholar 

  • Merritt EK, Cannon MV, Hammers DW, Le LN, Gokhale R, Sarathy A, Song TJ, Tierney MT, Suggs LJ, Walters TJ, Farrar RP (2010) Repair of traumatic skeletal muscle injury with bone-marrow-derived mesenchymal stem cells seeded on extracellular matrix. Tissue Eng Part A 16:2871–2881

    Article  CAS  PubMed  Google Scholar 

  • Milner DJ, Cameron JA (2013) Muscle repair and regeneration: stem cells, scaffolds, and the contributions of skeletal muscle to amphibian limb regeneration. Curr Top Microbiol Immunol 367:133–159

    CAS  PubMed  Google Scholar 

  • Mitchell KJ, Pannerec A, Cadot B, Parlakian A, Besson V, Gomes ER, Marazzi G, Sassoon DA (2010) Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol 12:257–266

    CAS  PubMed  Google Scholar 

  • Mizuno H, Zuk PA, Zhu M, Lorenz HP, Benhaim P, Hedrick MH (2002) Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg 109:199–209 discussion 210-191

    Article  PubMed  Google Scholar 

  • Monaco E, Bionaz M, Hollister SJ, Wheeler MB (2011) Strategies for regeneration of the bone using porcine adult adipose-derived mesenchymal stem cells. Theriogenology 75:1381–1399

    Article  CAS  PubMed  Google Scholar 

  • Mônaco E, Lima A, Bionaz M, Maki A, Wilson MS, Hurley LW, Wheeler MB (2009) Morphological and transcriptomic comparison of adipose and bone marrow derived porcine stem cells. Open Tissue Eng Regen Med J 2:20–33

  • Mouly V, Aamiri A, Perie S, Mamchaoui K, Barani A, Bigot A, Bouazza B, Francois V, Furling D, Jacquemin V, Negroni E, Riederer I, Vignaud A, St Guily JL, Butler-Browne GS (2005) Myoblast transfer therapy: is there any light at the end of the tunnel? Acta Myol 24:128–133

    CAS  PubMed  Google Scholar 

  • Navarro R, Juhas S, Keshavarzi S, Juhasova J, Motlik J, Johe K, Marsala S, Scadeng M, Lazar P, Tomori Z, Schulteis G, Beattie M, Ciacci JD, Marsala M (2012) Chronic spinal compression model in minipigs: a systematic behavioral, qualitative, and quantitative neuropathological study. J Neurotrauma 29:499–513

    Article  PubMed  PubMed Central  Google Scholar 

  • Negroni E, Vallese D, Vilquin JT, Butler-Browne G, Mouly V, Trollet C (2011) Current advances in cell therapy strategies for muscular dystrophies. Expert Opin Biol Ther 11:157–176

    Article  PubMed  Google Scholar 

  • Nihongaki Y, Furuhata Y, Otabe T, Hasegawa S, Yoshimoto K, Sato M (2017) CRISPR-Cas9-based photoactivatable transcription systems to induce neuronal differentiation. Nat Methods 14:963–966

    Article  CAS  PubMed  Google Scholar 

  • Perniconi B, Costa A, Aulino P, Teodori L, Adamo S, Coletti D (2011) The pro-myogenic environment provided by whole organ scale acellular scaffolds from skeletal muscle. Biomaterials 32:7870–7882

    Article  CAS  PubMed  Google Scholar 

  • Qazi TH, Mooney DJ, Pumberger M, Geissler S, Duda GN (2015) Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 53:502–521

    Article  CAS  PubMed  Google Scholar 

  • Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, Cao B, Gates C, Wernig A, Huard J (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157:851–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quattrocelli M, Palazzolo G, Perini I, Crippa S, Cassano M, Sampaolesi M (2012) Mouse and human Mesoangioblasts: isolation and characterization from adult skeletal muscles. In: DiMario JX (ed) Myogenesis: methods and protocols. Humana, Totowa, pp 65–76

    Chapter  Google Scholar 

  • Rogers RS, Bhattacharya J (2013) When cells become organelle donors. Physiology (Bethesda, Md) 28:414–422

    CAS  Google Scholar 

  • Scharner J, Zammit PS (2011) The muscle satellite cell at 50: the formative years. Skelet Muscle 1:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Scuteri A, Cassetti A, Tredici G (2006) Adult mesenchymal stem cells rescue dorsal root ganglia neurons from dying. Brain Res 1116:75–81

    Article  CAS  PubMed  Google Scholar 

  • Scuteri A, Monfrini M, Fumagalli G, Rodriguez-Menendez V, Bossi M, Tredici G, Cavaletti G (2015) Making connections: gap junctions are pivotal for MSCinduced long lasting survival of sensory neurons. Ital J Anat Embryol 120

  • Stern-Straeter J, Bonaterra GA, Juritz S, Birk R, Goessler UR, Bieback K, Bugert P, Schultz J, Hormann K, Kinscherf R, Faber A (2014) Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells. Int J Mol Med 33:160–170

    Article  CAS  PubMed  Google Scholar 

  • Ten Broek RW, Grefte S, Von den Hoff JW (2010) Regulatory factors and cell populations involved in skeletal muscle regeneration. J Cell Physiol 224:7–16

    PubMed  Google Scholar 

  • Thorrez L, Shansky J, Wang L, Fast L, VandenDriessche T, Chuah M, Mooney D, Vandenburgh H (2008) Growth, differentiation, transplantation and survival of human skeletal myofibers on biodegradable scaffolds. Biomaterials 29:75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonlorenzi R, Dellavalle A, Schnapp E, Cossu G, Sampaolesi M (2007) Isolation and characterization of mesoangioblasts from mouse, dog, and human tissues. Curr Protoc Stem Cell Biol Chapter 2:Unit 2B 1

  • Torrente Y, Belicchi M, Marchesi C, D’Antona G, Cogiamanian F, Pisati F, Gavina M, Giordano R, Tonlorenzi R, Fagiolari G, Lamperti C, Porretti L, Lopa R, Sampaolesi M, Vicentini L, Grimoldi N, Tiberio F, Songa V, Baratta P, Prelle A, Forzenigo L, Guglieri M, Pansarasa O, Rinaldi C, Mouly V, Butler-Browne GS, Comi GP, Biondetti P, Moggio M, Gaini SM, Stocchetti N, Priori A, D’Angelo MG, Turconi A, Bottinelli R, Cossu G, Rebulla P, Bresolin N (2007) Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant 16:563–577

    Article  CAS  PubMed  Google Scholar 

  • Torrente Y, Belicchi M, Sampaolesi M, Pisati F, Meregalli M, D’Antona G, Tonlorenzi R, Porretti L, Gavina M, Mamchaoui K, Pellegrino MA, Furling D, Mouly V, Butler-Browne GS, Bottinelli R, Cossu G, Bresolin N (2004) Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 114:182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trimarchi F, Favaloro A, Fulle S, Magaudda L, Puglielli C, Di Mauro D (2006) Culture of human skeletal muscle myoblasts: timing appearance and localization of dystrophin-glycoprotein complex and vinculin-talin-integrin complex. Cells Tissues Organs 183:87–98

    Article  CAS  PubMed  Google Scholar 

  • Valentin JE, Turner NJ, Gilbert TW, Badylak SF (2010) Functional skeletal muscle formation with a biologic scaffold. Biomaterials 31:7475–7484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valiunas V, Doronin S, Valiuniene L, Potapova I, Zuckerman J, Walcott B, Robinson RB, Rosen MR, Brink PR, Cohen IS (2004) Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J Physiol 555:617–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira NM, Brandalise V, Zucconi E, Jazedje T, Secco M, Nunes VA, Strauss BE, Vainzof M, Zatz M (2008) Human multipotent adipose-derived stem cells restore dystrophin expression of Duchenne skeletal-muscle cells in vitro. Biol Cell 100:231–241

    Article  CAS  PubMed  Google Scholar 

  • Wilschut KJ, Jaksani S, Van Den Dolder J, Haagsman HP, Roelen BA (2008) Isolation and characterization of porcine adult muscle-derived progenitor cells. J Cell Biochem 105:1228–1239

    Article  CAS  PubMed  Google Scholar 

  • Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    Article  CAS  PubMed  Google Scholar 

  • Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54:1177–1191

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, ZQ H, Turner NJ, Teng SF, Cheng WY, Zhou HY, Zhang L, HW H, Wang Q, Badylak SF (2016) Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template. Biomaterials 89:114–126

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Cao B, Li G, Huard J (2006) Mouse adipose-derived stem cells undergo multilineage differentiation in vitro but primarily osteogenic and chondrogenic differentiation in vivo. Tissue Eng 12:1891–1901

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Stephen Kaufman (University of Illinois) for his generous gift of polyclonal α7 integrin antibody, the NIH National Swine Resource and Research Center (NSRRC, University of Missouri-Columbia) for providing the GFP adipose tissue for the GFP ASC isolation and Kathryn Polkoff (University of Illinois) for help with editing of the manuscript. A portion of the work presented here was partially supported by the Carle Foundation Hospital (#2007–04072), Urbana, IL and the Illinois Regenerative Medicine Institute (IDPH Grant # 63080017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Wheeler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milner, D.J., Bionaz, M., Monaco, E. et al. Myogenic potential of mesenchymal stem cells isolated from porcine adipose tissue. Cell Tissue Res 372, 507–522 (2018). https://doi.org/10.1007/s00441-017-2764-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2764-z

Keywords

Navigation