Cell and Tissue Research

, Volume 372, Issue 2, pp 277–286 | Cite as

Spontaneous regression of neuroblastoma

  • Garrett M. BrodeurEmail author


Neuroblastomas are characterized by heterogeneous clinical behavior, from spontaneous regression or differentiation into a benign ganglioneuroma, to relentless progression despite aggressive, multimodality therapy. Indeed, neuroblastoma is unique among human cancers in terms of its propensity to undergo spontaneous regression. The strongest evidence for this comes from the mass screening studies conducted in Japan, North America and Europe and it is most evident in infants with stage 4S disease. This propensity is associated with a pattern of genomic change characterized by whole chromosome gains rather than segmental chromosome changes but the mechanism(s) underlying spontaneous regression are currently a matter of speculation. There is evidence to support several possible mechanisms of spontaneous regression in neuroblastomas: (1) neurotrophin deprivation, (2) loss of telomerase activity, (3) humoral or cellular immunity and (4) alterations in epigenetic regulation and possibly other mechanisms. It is likely that a better understanding of the mechanisms of spontaneous regression will help to identify targeted therapeutic approaches for these tumors. The most easily targeted mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A (TrkA) pathway. Pan-Trk inhibitors are currently in clinical trials and so Trk inhibition might be used as the first line of therapy in infants with biologically favorable tumors that require treatment. Alternative approaches consist of breaking immune tolerance to tumor antigens but approaches to telomere shortening or epigenetic regulation are not easily druggable. The different mechanisms of spontaneous neuroblastoma regression are reviewed here, along with possible therapeutic approaches.


Neuroblastoma Regression Spontaneous TrkA Telomerase 



Human leukocyte antigen


International Neuroblastoma Staging System


Natural killer


Nerve growth factor


Opsomyoclonus syndrome


Tumor-associated macrophages


Tropomyosin receptor kinase



Some of the information in this review has been presented previously (Brodeur and Bagatell 2014). This work was supported in part by a grant from the National Cancer Institute, Alex’s Lemonade Stand Foundation and the Audrey E. Evans endowed chair (GMB).


  1. Acharya S, Jayabose S, Kogan SJ, Tugal O, Beneck D, Leslie D, Slim M (1997) Prenatally diagnosed neuroblastoma. Cancer 80:304–310PubMedCrossRefGoogle Scholar
  2. Acheson A, Conover JC, Fandi JP, DeChiara TM, Russell M, Thadani A, Squinto SP, Yancopoulos GD, Lindsay RM (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374:450–453PubMedCrossRefGoogle Scholar
  3. Antunes NL, Khakoo Y, Matthay KK, Seeger RC, Stram DO, Gerstner E, Abrey LE, Dalmau J (2000) Antineuronal antibodies in patients with neuroblastoma and paraneoplastic opsoclonus-myoclonus. J Pediatr Hematol Oncol 22:315–320PubMedCrossRefGoogle Scholar
  4. Asgharzadeh S, Salo JA, Ji L, Oberthuer A, Fischer M, Berthold F, Hadjidaniel M, Liu CW, Metelitsa LS, Pique-Regi R, Wakamatsu P, Villablanca JG, Kreissman SG, Matthay KK, Shimada H, London WB, Sposto R, Seeger RC (2012) Clinical significance of tumor-associated inflammatory cells in metastatic neuroblastoma. J Clin Oncol 30:3525–3532PubMedPubMedCentralCrossRefGoogle Scholar
  5. Astuti D, Agathanggelou A, Honorio S, Dallol A, Martinsson T, Kogner P, Cummins C, Neumann HP, Voutilainen R, Dahia P, Eng C, Maher ER, Latif F (2001) RASSF1A promoter region CpG island hypermethylation in phaeochromocytomas and neuroblastoma tumours. Oncogene 20:7573–7577PubMedCrossRefGoogle Scholar
  6. Baker DL, Schmidt ML, Cohn SL, Maris JM, London WB, Buxton A, Stram D, Castleberry RP, Shimada H, Sandler A, Shamberger RC, Look AT, Reynolds CP, Seeger RC, Matthay KK, Children's Oncology G (2010) Outcome after reduced chemotherapy for intermediate-risk neuroblastoma. N Engl J Med 363:1313–1323PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bamji SX, Majdan M, Pozniak CD, Belliveau DJ, Aloyz R, Kohn J, Causing CG, Miller FD (1998) The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J Cell Biol 140:911–923PubMedPubMedCentralCrossRefGoogle Scholar
  8. Barbieri E, De Preter K, Capasso M, Chen Z, Hsu DM, Tonini GP, Lefever S, Hicks J, Versteeg R, Pession A, Speleman F, Kim ES, Shohet JM (2014) Histone chaperone CHAF1A inhibits differentiation and promotes aggressive neuroblastoma. Cancer Res 74:765–774PubMedCrossRefGoogle Scholar
  9. Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2(Suppl 1):S4–11PubMedCrossRefGoogle Scholar
  10. Beckwith JB, Perrin EV (1963) In situ neuroblastomas: a contribution to the natural history of neural crest tumors. Am J Pathol 43:1089–1104PubMedPubMedCentralGoogle Scholar
  11. Benard J, Raguenez G, Kauffmann A, Valent A, Ripoche H, Joulin V, Job B, Danglot G, Cantais S, Robert T, Terrier-Lacombe MJ, Chassevent A, Koscielny S, Fischer M, Berthold F, Lipinski M, Tursz T, Dessen P, Lazar V, Valteau-Couanet D (2008) MYCN-non-amplified metastatic neuroblastoma with good prognosis and spontaneous regression: a molecular portrait of stage 4S. Mol Oncol 2:261–271PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bessho F (1999) Comparison of the incidences of neuroblastoma for screened and unscreened cohorts. Acta Paediatr 88:404–406PubMedCrossRefGoogle Scholar
  13. Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3:203–216PubMedCrossRefPubMedCentralGoogle Scholar
  14. Brodeur GM, Ambros PF, Favrot MC (1998) Biological aspects of neuroblastoma screening. Med Pediatr Oncol 31:394–400CrossRefGoogle Scholar
  15. Brodeur GM, Bagatell R (2014) Mechanisms of neuroblastoma regression. Nat Rev Clin Oncol 11:704–713PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR, Light JE, Kolla V, Evans AE (2009) Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res 15:3244–3250PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brodeur GM, Nakagawara A, Yamashiro DJ, Ikegaki N, Liu XG, Azar CG, Lee CP, Evans AE (1997) Expression of TrkA, TrkB and TrkC in human neuroblastomas. J Neuro-Oncol 31:49–55CrossRefGoogle Scholar
  18. Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, De Bernardi B, Evans AE, Favrot M, Hedborg F et al (1993) Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncolo 11:1466–1477CrossRefGoogle Scholar
  19. Brodeur GM, Seeger RC, Barrett A, Berthold F, Castleberry RP, D'Angio G, De Bernardi B, Evans AE, Favrot M, Freeman AI et al (1988) International criteria for diagnosis, staging, and response to treatment in patients with neuroblastoma. J Clin Oncol 6:1874–1881PubMedCrossRefGoogle Scholar
  20. Challis GB, Stam HJ (1990) The spontaneous regression of cancer. A review of cases from 1900 to 1987. Acta Oncol 29:545–550PubMedCrossRefGoogle Scholar
  21. Cooper R, Khakoo Y, Matthay KK, Lukens JN, Seeger RC, Stram DO, Gerbing RB, Nakagawa A, Shimada H (2001) Opsoclonus-myoclonus-ataxia syndrome in neuroblastoma: histopathologic features-a report from the Children's cancer group. Med Pediatr Oncol 36:623–629PubMedCrossRefGoogle Scholar
  22. Cozzi DA, Mele E, Ceccanti S, Natale F, Clerico A, Schiavetti A, Dominici C (2013) Long-term follow-up of the "wait and see" approach to localized perinatal adrenal neuroblastoma. World J Surg 37:459–465PubMedCrossRefGoogle Scholar
  23. Croucher JL, Iyer R, Li N, Molteni V, Loren J, Gordon WP, Tuntland T, Liu B, Brodeur GM (2015) TrkB inhibition by GNF-4256 slows growth and enhances chemotherapeutic efficacy in neuroblastoma xenografts. Cancer Chemother Pharmacol 75:131–141PubMedCrossRefGoogle Scholar
  24. D'Angio GJ, Evans AE, Koop CE (1971) Special pattern of widespread neuroblastoma with a favourable prognosis. Lancet 1:1046–1049PubMedCrossRefGoogle Scholar
  25. Decock A, Ongenaert M, Vandesompele J, Speleman F (2011) Neuroblastoma epigenetics: from candidate gene approaches to genome-wide screenings. Epigenetics 6:962–970PubMedCrossRefGoogle Scholar
  26. Diede SJ (2014) Spontaneous regression of metastatic cancer: learning from neuroblastoma. Nat Rev Cancer 14:71–72PubMedCrossRefGoogle Scholar
  27. Diskin SJ, McDaniel L, Oldridge DA, Attiyeh E, Asgharzadeh S, Weisenberger DJ, Shen H, Diamond M, Auvil AG, Smith MA, Gerhard DS, Hogarty MD, London WB, Khan J, Seeger RC, Laird PW, Maris JM (2014) Integrative genomic and epigenomic characterization of stage4S neuroblastoma. Advances in neuroblastoma research–2014, Cologne, GermanyGoogle Scholar
  28. Doebele RC, Davis LE, Vaishnavi A, Le AT, Estrada-Bernal A, Keysar S, Jimeno A, Varella-Garcia M, Aisner DL, Li Y, Stephens PJ, Morosini D, Tuch BB, Fernandes M, Nanda N, Low JA (2015) An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov 5:1049–1057PubMedPubMedCentralCrossRefGoogle Scholar
  29. Drilon A, Siena S, Ou SI, Patel M, Ahn MJ, Lee J, Bauer TM, Farago AF, Wheler JJ, Liu SV, Doebele R, Giannetta L, Cerea G, Marrapese G, Schirru M, Amatu A, Bencardino K, Palmeri L, Sartore-Bianchi A, Vanzulli A, Cresta S, Damian S, Duca M, Ardini E, Li G, Christiansen J, Kowalski K, Johnson AD, Patel R, Luo D, Chow-Maneval E, Hornby Z, Multani PS, Shaw AT, De Braud FG (2017) Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor Entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov 7:400–409PubMedPubMedCentralCrossRefGoogle Scholar
  30. Erttmann R, Tafese T, Berthold F, Kerbl R, Mann J, Parker L, Schilling F, Ambros P, Christiansen H, Favrot M, Kabisch H, Hero B, Philip T (1998) 10 years' neuroblastoma screening in Europe: preliminary results of a clinical and biological review from the study Group for Evaluation of neuroblastoma screening in Europe (SENSE). Eur J Cancer 34:1391–1397PubMedCrossRefGoogle Scholar
  31. Estus S, Zaks WJ, Freeman RS, Gruda M, Bravo R, Johnson EM Jr (1994) Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis. J Cell Biol 127:1717–1727PubMedCrossRefGoogle Scholar
  32. Evans AE, D'Angio GJ, Randolph J (1971) A proposed staging for children with neuroblastoma. Child Cancer Stud Group A 27:374–378Google Scholar
  33. Evans AE, Kisselbach KD, Liu X, Eggert A, Ikegaki N, Camoratto AM, Dionne C, Brodeur GM (2001) Effect of CEP-751 (KT-6587) on neuroblastoma xenografts expressing TrkB. Med Pediat Oncol 36:181–184CrossRefGoogle Scholar
  34. Evans AE, Kisselbach KD, Yamashiro DJ, Ikegaki N, Camoratto AM, Dionne CA, Brodeur GM (1999) Antitumor activity of CEP-751 (KT-6587) on human neuroblastoma and medulloblastoma xenografts. Clin Cancer Res 5:3594–3602PubMedGoogle Scholar
  35. Everson TC (1964) Spontaneous regression of cancer. Ann N Y Acad Sci 114:721–735CrossRefPubMedGoogle Scholar
  36. Everson TC, Cole WH (1966) Spontaneous regression of cancer. Saunders, PhiladelphiaGoogle Scholar
  37. Fisher JP, Tweddle DA (2012) Neonatal neuroblastoma. Sem Fetal Neon Med 17:207–215CrossRefGoogle Scholar
  38. Garvin JH Jr, Lack EE, Berenberg W, Frantz CN (1984) Ganglioneuroma presenting with differentiated skeletal metastases. Rep Case Cancer 54:357–360Google Scholar
  39. George RE, Li S, Medeiros-Nancarrow C, Neuberg D, Marcus K, Shamberger RC, Pulsipher M, Grupp SA, Diller L (2006) High-risk neuroblastoma treated with tandem autologous peripheral-blood stem cell-supported transplantation: long-term survival update. J Clin Oncol 24:2891–2896PubMedCrossRefGoogle Scholar
  40. George RE, London WB, Cohn SL, Maris JM, Kretschmar C, Diller L, Brodeur GM, Castleberry RP, Look AT (2005) Hyperdiploidy plus nonamplified MYCN confers a favorable prognosis in children 12 to 18 months old with disseminated neuroblastoma: a pediatric oncology group study. J Clin Oncol 23:6466–6473PubMedCrossRefGoogle Scholar
  41. Goldschneider D, Mehlen P (2010) Dependence receptors: a new paradigm in cell signaling and cancer therapy. Oncogene 29:1865–1882PubMedCrossRefGoogle Scholar
  42. Grau E, Martinez F, Orellana C, Canete A, Yanez Y, Oltra S, Noguera R, Hernandez M, Bermudez JD, Castel V (2010) Epigenetic alterations in disseminated neuroblastoma tumour cells: influence of TMS1 gene hypermethylation in relapse risk in NB patients. J Cancer Res Clin Oncol 136:1415–1421PubMedCrossRefGoogle Scholar
  43. Gros C, Fahy J, Halby L, Dufau I, Erdmann A, Gregoire JM, Ausseil F, Vispe S, Arimondo PB (2012) DNA methylation inhibitors in cancer: recent and future approaches. Biochimie 94:2280–2296PubMedCrossRefGoogle Scholar
  44. Haas D, Ablin AR, Miller C, Zoger S, Matthay KK (1988) Complete pathologic maturation and regression of stage IVS neuroblastoma without treatment. Cancer 62:818–825PubMedCrossRefGoogle Scholar
  45. Ham J, Babij C, Whitfield J, Pfarr CM, Lallemand D, Yaniv M, Rubin LL (1995) A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 14:927–939PubMedCrossRefGoogle Scholar
  46. Hantzopoulos PA, Suri C, Glass DJ, Goldfarb MP, Yancopoulos GD (1994) The low affinity NGF receptor, p75, can collaborate with each of the Trks to potentiate functional responses to the neurotrophins. Neuron 13:187–201PubMedCrossRefGoogle Scholar
  47. Hayashi Y, Hanada R, Yamamoto K (1992) Biology of neuroblastomas in Japan found by screening. Am J Pediatr Hematol Oncol 14:342–347PubMedCrossRefGoogle Scholar
  48. Hero B, Simon T, Spitz R, Ernestus K, Gnekow AK, Scheel-Walter HG, Schwabe D, Schilling FH, Benz-Bohm G, Berthold F (2008) Localized infant neuroblastomas often show spontaneous regression: results of the prospective trials NB95-S and NB97. J Clin Oncol 26:1504–1510PubMedCrossRefGoogle Scholar
  49. Hiyama E, Hiyama K, Yokoyama T, Matsuura Y, Piatyszek MA, Shay JW (1995) Correlating telomerase activity levels with human neuroblastoma outcomes. Nat Med 1:249–255PubMedCrossRefGoogle Scholar
  50. Ho PT, Estroff JA, Kozakewich H, Shamberger RC, Lillehei CW, Grier HE, Diller L (1993) Prenatal detection of neuroblastoma: a ten-year experience from the Dana-Farber Cancer Institute and Children's hospital. Pediatrics 92:358–364PubMedGoogle Scholar
  51. Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, Foster P, Camoratto AM, Evans AE, Brodeur GM (2002) Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res 62:6462–6466PubMedGoogle Scholar
  52. Ho R, Minturn JE, Simpson AM, Iyer R, Light JE, Evans AE, Brodeur GM (2011) The effect of P75 on Trk receptors in neuroblastomas. Cancer Lett 305:76–85PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hoehner JC, Olsen L, Sandstedt B, Kaplan DR, Pahlman S (1995) Association of neurotrophin receptor expression and differentiation in human neuroblastoma. Am J Pathol 147:102–113PubMedPubMedCentralGoogle Scholar
  54. Ikeda Y, Lister J, Bouton JM, Buyukpamukcu M (1981) Congenital neuroblastoma, neuroblastoma in situ, and the normal fetal development of the adrenal. J Pediatr Surg 16:636–644PubMedCrossRefGoogle Scholar
  55. Iyer R, Evans AE, Qi X, Ho R, Minturn JE, Zhao H, Balamuth N, Maris JM, Brodeur GM (2010) Lestaurtinib enhances the antitumor efficacy of chemotherapy in murine xenograft models of neuroblastoma. Clin Cancer Res 16:1478–1485PubMedPubMedCentralCrossRefGoogle Scholar
  56. Iyer R, Varela CR, Minturn JE, Ho R, Simpson AM, Light JE, Evans AE, Zhao H, Thress K, Brown JL, Brodeur GM (2012) AZ64 inhibits TrkB and enhances the efficacy of chemotherapy and local radiation in neuroblastoma xenografts. Cancer Chemother Pharmacol 70:477–486PubMedPubMedCentralCrossRefGoogle Scholar
  57. Iyer R, Wehrmann L, Golden RL, Naraparaju K, Croucher JL, MacFarland SP, Guan P, Kolla V, Wei G, Cam N, Li G, Hornby Z, Brodeur GM (2016) Entrectinib is a potent inhibitor of Trk-driven neuroblastomas in a xenograft mouse model. Cancer Lett 372:179–186PubMedPubMedCentralCrossRefGoogle Scholar
  58. Jaboin J, Kim CJ, Kaplan DR, Thiele CJ (2002) Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3′-kinase pathway. Cancer Res 62:6756–6763PubMedGoogle Scholar
  59. Kahane N, Kalcheim C (1994) Expression of trkC receptor mRNA during development of the avian nervous system. J Neurobiol 25:571–584PubMedCrossRefGoogle Scholar
  60. Kaneko Y, Kanda N, Maseki N, Nakachi K, Takeda T, Okabe I, Sakurai M (1990) Current urinary mass screening for catecholamine metabolites at 6 months of age may be detecting only a small portion of high-risk neuroblastomas: a chromosome and N-myc amplification study. J Clin Oncol 8:2005–2013PubMedCrossRefGoogle Scholar
  61. Kataoka Y, Matsumura T, Yamamoto S, Sugimoto T, Sawada T (1993) Distinct cytotoxicity against neuroblastoma cells of peripheral blood and tumor-infiltrating lymphocytes from patients with neuroblastoma. Cancer Lett 73:11–21PubMedCrossRefGoogle Scholar
  62. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015PubMedCrossRefGoogle Scholar
  63. Kogner P, Barbany G, Dominici C, Castello MA, Raschella G, Persson H (1993) Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res 53:2044–2050PubMedGoogle Scholar
  64. Krams M, Hero B, Berthold F, Parwaresch R, Harms D, Rudolph P (2003) Full-length telomerase reverse transcriptase messenger RNA is an independent prognostic factor in neuroblastoma. Am J Pathol 162:1019–1026PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kushner BH, Cheung NK, LaQuaglia MP, Ambros PF, Ambros IM, Bonilla MA, Gerald WL, Ladanyi M, Gilbert F, Rosenfield NS, Yeh SD (1996) Survival from locally invasive or widespread neuroblastoma without cytotoxic therapy. J Clin Oncol 14:373–381PubMedCrossRefGoogle Scholar
  66. Lavarino C, Cheung NK, Garcia I, Domenech G, de Torres C, Alaminos M, Rios J, Gerald WL, Kushner B, LaQuaglia M, Mora J (2009) Specific gene expression profiles and chromosomal abnormalities are associated with infant disseminated neuroblastoma. BMC Cancer 9:44PubMedPubMedCentralCrossRefGoogle Scholar
  67. London WB, Castleberry RP, Matthay KK, Look AT, Seeger RC, Shimada H, Thorner P, Brodeur G, Maris JM, Reynolds CP, Cohn SL (2005) Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children's oncology group. J Clin Oncol 23:6459–6465PubMedCrossRefGoogle Scholar
  68. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, Rossig C, Russell HV, Diouf O, Liu E, Liu H, Wu MF, Gee AP, Mei Z, Rooney CM, Heslop HE, Brenner MK (2011) Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118:6050–6056PubMedPubMedCentralCrossRefGoogle Scholar
  69. Matsumoto K, Wada RK, Yamashiro JM, Kaplan DR, Thiele CJ (1995) Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res 55:1798–1806PubMedGoogle Scholar
  70. Matthay KK (1998) Stage 4S neuroblastoma: what makes it special? J Clin Oncol 16:2003–2006PubMedCrossRefGoogle Scholar
  71. Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, Swift P, Shimada H, Black CT, Brodeur GM, Gerbing RB, Reynolds CP (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Child Cancer Group New Eng J Med 341:1165–1173PubMedCrossRefGoogle Scholar
  72. McCabe MT, Creasy CL (2014) EZH2 as a potential target in cancer therapy. Epigenomics 6:341–351PubMedCrossRefGoogle Scholar
  73. Minturn JE, Evans AE, Villablanca JG, Yanik GA, Park JR, Shusterman S, Groshen S, Hellriegel ET, Bensen-Kennedy D, Matthay KK, Brodeur GM, Maris JM (2011) Phase I trial of lestaurtinib for children with refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study. Cancer Chemother Pharmacol 68:1057–1065PubMedPubMedCentralCrossRefGoogle Scholar
  74. Monclair T, Brodeur GM, Ambros PF, Brisse HJ, Cecchetto G, Holmes K, Kaneko M, London WB, Matthay KK, Nuchtern JG, von Schweinitz D, Simon T, Cohn SL, Pearson AD, Force IT (2009) The international neuroblastoma risk group (INRG) staging system: an INRG task force report. J Clin Oncol 27:298–303PubMedPubMedCentralCrossRefGoogle Scholar
  75. Nagasubramanian R, Wei J, Gordon P, Rastatter JC, Cox MC, Pappo A (2016) Infantile Fibrosarcoma with NTRK3-ETV6 fusion successfully treated with the tropomyosin-related kinase inhibitor LOXO-101. Pediatr Blood Cancer 63:1468–1470PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nakagawara A (1998) Molecular basis of spontaneous regression of neuroblastoma: role of neurotrophic signals and genetic abnormalities. Hum Cell 11:115–124PubMedGoogle Scholar
  77. Nakagawara A, Arima M, Azar CG, Scavarda NJ, Brodeur GM (1992) Inverse relationship between trk expression and N-myc amplification in human neuroblastomas. Cancer Res 52:1364–1368PubMedGoogle Scholar
  78. Nakagawara A, Arima-Nakagawara M, Scavarda NJ, Azar CG, Cantor AB, Brodeur GM (1993) Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328:847–854PubMedCrossRefGoogle Scholar
  79. Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM (1994) Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 14:759–767PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nakagawara A, Brodeur GM (1997) Role of neurotrophins and their receptors in human neuroblastomas: a primary culture study. Eur J Cancer 33:2050–2053PubMedCrossRefGoogle Scholar
  81. Nakamura K, Martin KC, Jackson JK, Beppu K, Woo CW, Thiele CJ (2006) Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1alpha in neuroblastoma cells. Cancer Res 66:4249–4255PubMedCrossRefGoogle Scholar
  82. Nickerson HJ, Matthay KK, Seeger RC, Brodeur GM, Shimada H, Perez C, Atkinson JB, Selch M, Gerbing RB, Stram DO, Lukens J (2000) Favorable biology and outcome of stage IV-S neuroblastoma with supportive care or minimal therapy: a Children's cancer group study. J Clin Oncol 18:477–486PubMedCrossRefGoogle Scholar
  83. Nikoletopoulou V, Lickert H, Frade JM, Rencurel C, Giallonardo P, Zhang L, Bibel M, Barde YA (2010) Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature 467:59–63PubMedCrossRefGoogle Scholar
  84. Nuchtern JG, London WB, Barnewolt CE, Naranjo A, McGrady PW, Geiger JD, Diller L, Schmidt ML, Maris JM, Cohn SL, Shamberger RC (2012) A prospective study of expectant observation as primary therapy for neuroblastoma in young infants: a Children's oncology group study. Ann Surg 256:573–580PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ohali A, Avigad S, Ash S, Goshen Y, Luria D, Feinmesser M, Zaizov R, Yaniv I (2006) Telomere length is a prognostic factor in neuroblastoma. Cancer 107:1391–1399PubMedCrossRefGoogle Scholar
  86. Pachnis V, Mankoo B, Costantini F (1993) Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119:1005–1017PubMedGoogle Scholar
  87. Papac RJ (1998) Spontaneous regression of cancer: possible mechanisms. In vivo 12:571–578PubMedGoogle Scholar
  88. Peifer M, Hertwig F, Roels F, Dreidax D, Gartlgruber M, Menon R, Kramer A, Roncaioli JL, Sand F, Heuckmann JM, Ikram F, Schmidt R, Ackermann S, Engesser A, Kahlert Y, Vogel W, Altmuller J, Nurnberg P, Thierry-Mieg J, Thierry-Mieg D, Mariappan A, Heynck S, Mariotti E, Henrich KO, Gloeckner C, Bosco G, Leuschner I, Schweiger MR, Savelyeva L, Watkins SC, Shao C, Bell E, Hofer T, Achter V, Lang U, Theissen J, Volland R, Saadati M, Eggert A, de Wilde B, Berthold F, Peng Z, Zhao C, Shi L, Ortmann M, Buttner R, Perner S, Hero B, Schramm A, Schulte JH, Herrmann C, O'Sullivan RJ, Westermann F, Thomas RK, Fischer M (2015) Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 526:700–704PubMedPubMedCentralCrossRefGoogle Scholar
  89. Pranzatelli MR, Travelstead AL, Tate ED, Allison TJ, Moticka EJ, Franz DN, Nigro MA, Parke JT, Stumpf DA, Verhulst SJ (2004) B- and T-cell markers in opsoclonus-myoclonus syndrome: immunophenotyping of CSF lymphocytes. Neurology 62:1526–1532PubMedCrossRefGoogle Scholar
  90. Pritchard J, Hickman JA (1994) Why does stage 4s neuroblastoma regress spontaneously? Lancet 344:869–870PubMedCrossRefGoogle Scholar
  91. Rabizadeh S, Ye X, Wang JJ, Bredesen DE (1999) Neurotrophin dependence mediated by p75NTR: contrast between rescue by BDNF and NGF. Cell Death Dif 6:1222–1227CrossRefGoogle Scholar
  92. Raffaghello L, Prigione I, Bocca P, Morandi F, Camoriano M, Gambini C, Wang X, Ferrone S, Pistoia V (2005) Multiple defects of the antigen-processing machinery components in human neuroblastoma: immunotherapeutic implications. Oncogene 24:4634–4644PubMedCrossRefGoogle Scholar
  93. Rodriguez-Tebar A, Rohrer H (1991) Retinoic acid induces NGF-dependent survival response and high-affinity NGF receptors in immature chick sympathetic neurons. Development 112:813–820PubMedGoogle Scholar
  94. Rudnick E, Khakoo Y, Antunes NL, Seeger RC, Brodeur GM, Shimada H, Gerbing RB, Stram DO, Matthay KK (2001) Opsoclonus-myoclonus-ataxia syndrome in neuroblastoma: clinical outcome and antineuronal antibodies-a report from the Children's cancer group study. Med Pediatr Oncol 36:612–622PubMedCrossRefGoogle Scholar
  95. Russo C, Cohn SL, Petruzzi MJ, de Alarcon PA (1997) Long-term neurologic outcome in children with opsoclonus-myoclonus associated with neuroblastoma: a report from the pediatric oncology group. Med Pediatr Oncol 28:284–288PubMedCrossRefGoogle Scholar
  96. Samy M, Gattolliat CH, Pendino F, Hillion J, Nguyen E, Bombard S, Douc-Rasy S, Benard J, Segal-Bendirdjian E (2012) Loss of the malignant phenotype of human neuroblastoma cells by a catalytically inactive dominant-negative hTERT mutant. Mol Cancer Ther 11:2384–2393PubMedCrossRefGoogle Scholar
  97. Sawada T, Kidowaki T, Sakamoto I, Hashida T, Matsumura T, Nakagawa M, Kusunoki T (1984) Neuroblastoma. Mass Screen Detect Prognos Cancer 53:2731–2735Google Scholar
  98. Saylors RL 3rd, Cohn SL, Morgan ER, Brodeur GM (1994) Prenatal detection of neuroblastoma by fetal ultrasonography. Am J Pediat Hematol/Oncol 16:356–360Google Scholar
  99. Schilling FH, Spix C, Berthold F, Erttmann R, Fehse N, Hero B, Klein G, Sander J, Schwarz K, Treuner J, Zorn U, Michaelis J (2002) Neuroblastoma screening at one year of age. N Engl J Med 346:1047–1053PubMedCrossRefGoogle Scholar
  100. Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B (1999a) Terminology and morphologic criteria of neuroblastic tumors: recommendations by the international neuroblastoma pathology committee. Cancer 86:349–363PubMedCrossRefGoogle Scholar
  101. Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B, Stram DO, Gerbing RB, Lukens JN, Matthay KK, Castleberry RP (1999b) The international neuroblastoma pathology classification (the Shimada system). Cancer 86:364–372PubMedCrossRefGoogle Scholar
  102. Squire R, Fowler CL, Brooks SP, Rich GA, Cooney DR (1990) The relationship of class I MHC antigen expression to stage IV-S disease and survival in neuroblastoma. J Pediatr Surg 25:381–386PubMedCrossRefGoogle Scholar
  103. Streutker CJ, Thorner P, Fabricius N, Weitzman S, Zielenska M (2001) Telomerase activity as a prognostic factor in neuroblastomas. Pediatr Dev Pathol 4:62–67PubMedCrossRefGoogle Scholar
  104. Suzuki T, Bogenmann E, Shimada H, Stram D, Seeger RC (1993) Lack of high-affinity nerve growth factor receptors in aggressive neuroblastomas. J Natl Cancer Inst 85:377–384PubMedCrossRefGoogle Scholar
  105. Tacconelli A, Farina AR, Cappabianca L, Desantis G, Tessitore A, Vetuschi A, Sferra R, Rucci N, Argenti B, Screpanti I, Gulino A, Mackay AR (2004) TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell 6:347–360PubMedCrossRefGoogle Scholar
  106. Tacconelli A, Farina AR, Cappabianca L, Gulino A, Mackay AR (2005) Alternative TrkAIII splicing: a potential regulated tumor-promoting switch and therapeutic target in neuroblastoma. Future Oncol 1:689–698PubMedCrossRefGoogle Scholar
  107. Taggart DR, London WB, Schmidt ML, DuBois SG, Monclair TF, Nakagawara A, De Bernardi B, Ambros PF, Pearson AD, Cohn SL, Matthay KK (2011) Prognostic value of the stage 4S metastatic pattern and tumor biology in patients with metastatic neuroblastoma diagnosed between birth and 18 months of age. J Clin Oncol 29:4358–4364PubMedPubMedCentralCrossRefGoogle Scholar
  108. Takita J, Yang HW, Bessho F, Hanada R, Yamamoto K, Kidd V, Teitz T, Wei T, Hayashi Y (2000) Absent or reduced expression of the caspase 8 gene occurs frequently in neuroblastoma, but not commonly in Ewing sarcoma or rhabdomyosarcoma. Med Pediatr Oncol 35:541–543PubMedCrossRefGoogle Scholar
  109. Thiele CJ, Li Z, McKee AE (2009) On Trk--the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin Cancer Res 15:5962–5967PubMedPubMedCentralCrossRefGoogle Scholar
  110. Tsuzuki T, Takahashi M, Asai N, Iwashita T, Matsuyama M, Asai J (1995) Spatial and temporal expression of the ret proto-oncogene product in embryonic, infant and adult rat tissues. Oncogene 10:191–198PubMedGoogle Scholar
  111. Turkel SB, Itabashi HH (1974) The natural history of neuroblastic cells in the fetal adrenal gland. Am J Pathol 76:225–244PubMedPubMedCentralGoogle Scholar
  112. Valteau D, Scott V, Carcelain G, Hartmann O, Escudier B, Hercend T, Triebel F (1996) T-cell receptor repertoire in neuroblastoma patients. Cancer Res 56:362–369PubMedGoogle Scholar
  113. Woods WG, Gao RN, Shuster JJ, Robison LL, Bernstein M, Weitzman S, Bunin G, Levy I, Brossard J, Dougherty G, Tuchman M, Lemieux B (2002) Screening of infants and mortality due to neuroblastoma. N Engl J Med 346:1041–1046PubMedCrossRefGoogle Scholar
  114. Woods WG, Tuchman M, Robison LL, Bernstein M, Leclerc J-M, Brisson LC, Brossard J, Hill G, Shuster J, Luepker R, Weitzman S, Bunin G, Lemieux B (1996) A population-based study of the usefulness of screening for neuroblastoma. Lancet 348:1682–1687PubMedCrossRefGoogle Scholar
  115. Yamamoto K, Ohta S, Ito E, Hayashi Y, Asami T, Mabuchi O, Higashigawa M, Tanimura M (2002) Marginal decrease in mortality and marked increase in incidence as a result of neuroblastoma screening at 6 months of age: cohort study in seven prefectures in Japan. J Clin Oncol 20:1209–1214PubMedCrossRefGoogle Scholar
  116. Yang Q, Kiernan CM, Tian Y, Salwen HR, Chlenski A, Brumback BA, London WB, Cohn SL (2007) Methylation of CASP8, DCR2, and HIN-1 in neuroblastoma is associated with poor outcome. Clin Cancer Res 13:3191–3197PubMedCrossRefGoogle Scholar
  117. Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay KK, Shimada H, Grupp SA, Seeger R, Reynolds CP, Buxton A, Reisfeld RA, Gillies SD, Cohn SL, Maris JM, Sondel PM, Children's Oncology G (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363:1324–1334PubMedPubMedCentralCrossRefGoogle Scholar
  118. Yu F, Zhu X, Feng C, Wang T, Hong Q, Liu Z, Tang S (2011) Proteomics-based identification of spontaneous regression-associated proteins in neuroblastoma. J Pediatr Surg 46:1948–1955PubMedCrossRefGoogle Scholar
  119. Yuza Y, Agawa M, Matsuzaki M, Yamada H, Urashima M (2003) Gene and protein expression profiling during differentiation of neuroblastoma cells triggered by 13-cis retinoic acid. J Pediatr Hematol Oncol 25:715–720PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Oncology, Department of Pediatrics, the Children’s Hospital of PhiladelphiaUniversity of Pennsylvania/Perelman School of MedicinePhiladelphiaUSA
  2. 2.Oncology ResearchThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations