Cell and Tissue Research

, Volume 371, Issue 2, pp 293–307 | Cite as

Live imaging analysis of human gastric epithelial spheroids reveals spontaneous rupture, rotation and fusion events

  • T. Andrew Sebrell
  • Barkan Sidar
  • Rachel Bruns
  • Royce A. Wilkinson
  • Blake Wiedenheft
  • Paul J. Taylor
  • Brian A. Perrino
  • Linda C. Samuelson
  • James N. Wilking
  • Diane BimczokEmail author
Regular Article


Three-dimensional cultures of primary epithelial cells including organoids, enteroids and epithelial spheroids have become increasingly popular for studies of gastrointestinal development, mucosal immunology and epithelial infection. However, little is known about the behavior of these complex cultures in their three-dimensional culture matrix. Therefore, we performed extended time-lapse imaging analysis (up to 4 days) of human gastric epithelial spheroids generated from adult tissue samples in order to visualize the dynamics of the spheroids in detail. Human gastric epithelial spheroids cultured in our laboratory grew to an average diameter of 443.9 ± 34.6 μm after 12 days, with the largest spheroids reaching diameters of >1000 μm. Live imaging analysis revealed that spheroid growth was associated with cyclic rupture of the epithelial shell at a frequency of 0.32 ± 0.1/day, which led to the release of luminal contents. Spheroid rupture usually resulted in an initial collapse, followed by spontaneous re-formation of the spheres. Moreover, spheroids frequently rotated around their axes within the Matrigel matrix, possibly propelled by basolateral pseudopodia-like formations of the epithelial cells. Interestingly, adjacent spheroids occasionally underwent luminal fusion, as visualized by injection of individual spheroids with FITC–Dextran (4 kDa). In summary, our analysis revealed unexpected dynamics in human gastric spheroids that challenge our current view of cultured epithelia as static entities and that may need to be considered when performing spheroid infection experiments.


Stomach Epithelium Organoid Live imaging Human 



Funding for our study was provided by the National Institutes of Health grants K01 DK097144 (DB); R03 DK107960 (DB), the National Science Foundation, DMR-1455247 (JW) and the Montana University System Research Initiative 51040-MUSRI2015-03 (DB). We greatly appreciate support from the National Institutes of Health IDeA Program grant GM110732, an equipment grant from the M.J. Murdock Charitable Trust and the Montana State University Agricultural Experimental Station for the Flow Cytometry Core Facility at Montana State University. Funding for shared facilities used in this work was also provided by the NSF under award number CBET-1039785. GeneSearch, Inc. development of the GeneSearch Embryo Cradle was funded by an SBIR grant from ORIP/NIH 5R44OD012083 (PJT). We would also like to thank Dr. K. Sasse (Sasse Surgical Associates, Reno, NV) for collecting human gastric tissue samples, Dr. T. Stappenbeck (Washington University, St. Louis) for sharing the L-WRN cell line with us and Dr. Seth Walk for helpful discussions.

Author contributions

D.B., B.W., L.C.S. and J.W. planned and oversaw the experiments; T.A.S., B.S., R.B. and R.A.W. performed the experiments; P.J.T. developed microinjection equipment and protocols, B.A.P. provided human gastric tissue samples; D.B., T.A.S. and R.B. analyzed the data; T.A.S. and D.B. wrote the manuscript; all authors provided critical feedback on the manuscript.

Compliance with ethical standards

Conflict of interest statement

Dr. Paul Taylor has a potential conflict of interest, since he is the owner of GeneSearch, Inc., Bozeman, MT, which manufactures the EmbryoCradle microinjector that was used in this study. None of the other authors declare a conflict of interest.

Supplementary material

441_2017_2726_MOESM1_ESM.docx (21 kb)
Supplementary Table 1 (DOCX 21 kb)
441_2017_2726_MOESM4_ESM.mp4 (2.7 mb)
Supplemental movie 3 Live imaging of a gastric epithelial spheroid microinjected with 4 kDa FITC dextran. At 13.20 h, the spheroid ruptures and FITC-dextran is released into the Matrigel matrix surrounding the spheroid and slowly disappears from the lumen. (MP4 2744 kb)
441_2017_2726_MOESM5_ESM.avi (3.7 mb)
Supplemental movie 4 Spontaneous rotation of gastric epithelial spheroids in Matrigel visualized by phase contrast live imaging. Note change in rotational direction of the spheroid. (AVI 3836 kb)


  1. Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H, Kujala P, Vries R, Peters PJ, Clevers H (2015) In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148:126–136CrossRefPubMedGoogle Scholar
  2. Benton G, George J, Kleinman HK, Arnaoutova IP (2009) Advancing science and technology via 3D culture on basement membrane matrix. J Cell Physiol 221:18–25CrossRefPubMedGoogle Scholar
  3. Bertaux-Skeirik N, Feng R, Schumacher MA, Li J, Mahe MM, Engevik AC, Javier JE, Peek RM Jr, Ottemann K, Orian-Rousseau V, Boivin GP, Helmrath MA, Zavros Y (2015) CD44 plays a functional role in helicobacter pylori-induced epithelial cell proliferation. PLoS Pathog 11:e1004663CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bimczok D, Smythies LE, Waites KB, Grams JM, Stahl RD, Mannon PJ, Peter S, Wilcox CM, Harris PR, Das S, Ernst PB, Smith PD (2013) Helicobacter pylori infection inhibits phagocyte clearance of apoptotic gastric epithelial cells. J Immunol 190(12):6626–6634Google Scholar
  5. Bimczok D, Kao JY, Zhang M, Cochrun S, Mannon P, Peter S, Wilcox CM, Mönkemüller KE, Harris PR, Grams JM, Stahl RD, Smith PD, Smythies LE (2014) Human gastric epithelial cells contribute to gastric immune regulation by providing retinoic acid to dendritic cells. Mucosal Immunol 8(3):533–544Google Scholar
  6. Bohorquez DV, Chandra R, Samsa LA, Vigna SR, Liddle RA (2011) Characterization of basal pseudopod-like processes in ileal and colonic PYY cells. J Mol Histol 42:3–13CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bradford EM, Ryu SH, Singh AP, Lee G, Goretsky T, Sinh P, Williams DB, Cloud AL, Gounaris E, Patel V, Lamping OF, Lynch EB, Moyer MP, De Plaen IG, Shealy DJ, Yang GY, Barrett TA (2017) Epithelial TNF receptor signaling promotes mucosal repair in inflammatory bowel disease. J Immunol 199:1886–1897CrossRefPubMedGoogle Scholar
  8. Brumfield SK, Ortmann AC, Ruigrok V, Suci P, Douglas T, Young MJ (2009) Particle assembly and ultrastructural features associated with replication of the lytic archaeal virus sulfolobus turreted icosahedral virus. J Virol 83:5964–5970CrossRefPubMedPubMedCentralGoogle Scholar
  9. Burgess DR (1976) Structure of the epithelial - mesenchymal interface during early morphogenesis of the chick duodenum. Tissue Cell 8:147–158CrossRefPubMedGoogle Scholar
  10. Corpron RE (1966) The ultrastructure of the gastric mucosa in normal and hypophysectomized rats. Am J Anat 118:53–90CrossRefPubMedGoogle Scholar
  11. Creamer B, Shorter RG, Bamforth J (1961) The turnover and shedding of epithelial cells. I. The turnover in the gastro-intestinal tract. Gut 2:110–118CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR (2016) Organoid models of human gastrointestinal development and disease. Gastroenterology 150:1098–1112CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM, de Winter-de Groot KM, Brandsma AM, de Jong NW, Bijvelds MJ, Scholte BJ, Nieuwenhuis EE, van den Brink S, Clevers H, van der Ent CK, Middendorp S, Beekman JM (2013) A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 19:939–945CrossRefPubMedGoogle Scholar
  14. Demitrack ES, Gifford GB, Keeley TM, Carulli AJ, VanDussen KL, Thomas D, Giordano TJ, Liu Z, Kopan R, Samuelson LC (2015) Notch signaling regulates gastric antral LGR5 stem cell function. EMBO J 34:2522–2536CrossRefPubMedPubMedCentralGoogle Scholar
  15. Demitrack ES, Gifford GB, Keeley TM, Horita N, Todisco A, Turgeon DK, Siebel CW, Samuelson LC (2017) NOTCH1 and NOTCH2 regulate epithelial cell proliferation in mouse and human gastric corpus. Am J Physiol Gastrointest Liver Physiol 312:G133–G144CrossRefPubMedGoogle Scholar
  16. Diamond JM, Tormey JM (1966) Role of long extracellular channels in fluid transport across epithelia. Nature 210:817–820CrossRefPubMedGoogle Scholar
  17. Engevik AC, Feng R, Choi E, White S, Bertaux-Skeirik N, Li J, Mahe MM, Aihara E, Yang L, DiPasquale B, Oh S, Engevik KA, Giraud AS, Montrose MH, Medvedovic M, Helmrath MA, Goldenring JR, Zavros Y (2016) The development of spasmolytic polypeptide/TFF2-expressing metaplasia (SPEM) during gastric repair is absent in the aged stomach. Cell Mol Gastroenterol Hepatol 2:605–624CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gifford GB, Demitrack ES, Keeley TM, Tam A, La Cunza N, Dedhia PH, Spence JR, Simeone DM, Saotome I, Louvi A, Siebel CW, Samuelson LC (2017) Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homoeostasis. Gut 66:1001–1011CrossRefPubMedGoogle Scholar
  19. den Hartog G, Chattopadhyay R, Ablack A, Hall EH, Butcher LD, Bhattacharyya A, Eckmann L, Harris PR, Das S, Ernst PB, Crowe SE (2016) Regulation of Rac1 and reactive oxygen species production in response to infection of gastrointestinal epithelia. PLoS Pathog 12:e1005382CrossRefGoogle Scholar
  20. Heath JP (1996) Epithelial cell migration in the intestine. Cell Biol Int 20:139–146CrossRefPubMedGoogle Scholar
  21. Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV, Weinstock JV, Gallini CA, Redding K, Margolskee RF, Osborne LC, Artis D, Garrett WS (2016) Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351:1329–1333CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hynds RE, Giangreco A (2013) Concise review: the relevance of human stem cell-derived organoid models for epithelial translational medicine. Stem Cells 31:417–422CrossRefPubMedPubMedCentralGoogle Scholar
  23. Iizuka M, Konno S (2011) Wound healing of intestinal epithelial cells. World J Gastroenterol 17:2161–2171CrossRefPubMedPubMedCentralGoogle Scholar
  24. Karam SM, Li Q, Gordon JI (1997) Gastric epithelial morphogenesis in normal and transgenic mice. Am J Phys 272:G1209–G1220Google Scholar
  25. Larsen EH, Willumsen NJ, Mobjerg N, Sorensen JN (2009) The lateral intercellular space as osmotic coupling compartment in isotonic transport. Acta Physiol (Oxford) 195:171–186CrossRefGoogle Scholar
  26. Leushacke M, Barker N (2014) Ex vivo culture of the intestinal epithelium: strategies and applications. Gut 63:1345–1354CrossRefPubMedGoogle Scholar
  27. Lipkin M (1965) Cell replication in the gastrointestinal tract of man. Gastroenterology 48:616–624PubMedGoogle Scholar
  28. Mahe MM, Aihara E, Schumacher MA, Zavros Y, Montrose MH, Helmrath MA, Sato T, Shroyer NF (2013) Establishment of gastrointestinal epithelial organoids. Curr Protoc Mouse Biol 3:217–240CrossRefPubMedPubMedCentralGoogle Scholar
  29. McCracken KW, Cata EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE, Tsai YH, Mayhew CN, Spence JR, Zavros Y, Wells JM (2014) Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516:400–404CrossRefPubMedPubMedCentralGoogle Scholar
  30. McNiven MA (2013) Breaking away: matrix remodeling from the leading edge. Trends Cell Biol 23:16–21CrossRefPubMedGoogle Scholar
  31. Miyoshi H (2017) Wnt-expressing cells in the intestines: guides for tissue remodeling. J Biochem 161:19–25CrossRefPubMedGoogle Scholar
  32. Miyoshi H, Stappenbeck TS (2013) In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat Protoc 8:2471–2482CrossRefPubMedPubMedCentralGoogle Scholar
  33. Miyoshi H, Ajima R, Luo CT, Yamaguchi TP, Stappenbeck TS (2012) Wnt5a potentiates TGF-beta signaling to promote colonic crypt regeneration after tissue injury. Science 338:108–113CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mollazade K, Omid M, Tab FA, Mohtasebi SS (2012) Principles and applications of light backscattering imaging in quality evaluation of agro-food products: a review. Food Bioprocess Technol 5:1465–1485CrossRefGoogle Scholar
  35. Necchi V, Manca R, Ricci V, Solcia E (2009) Evidence for transepithelial dendritic cells in human H. Pylori active gastritis. Helicobacter 14:208–222CrossRefPubMedGoogle Scholar
  36. Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S, Sugihara H, Fujimoto K, Weissman IL, Capecchi MR, Kuo CJ (2009) Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 15:701–706CrossRefPubMedPubMedCentralGoogle Scholar
  37. Pechhold K, Pohl T, Kabelitz D (1994) Rapid quantification of lymphocyte subsets in heterogeneous cell populations by flow cytometry. Cytometry 16:152–159CrossRefPubMedGoogle Scholar
  38. Powell RH, Behnke MS (2017) WRN conditioned media is sufficient for in vitro propagation of intestinal organoids from large farm and small companion animals. Biol Open 6:698–705CrossRefPubMedPubMedCentralGoogle Scholar
  39. Riehl TE, Santhanam S, Foster L, Ciorba M, Stenson WF (2015) CD44 and TLR4 mediate hyaluronic acid regulation of Lgr5+ stem cell proliferation, crypt fission, and intestinal growth in postnatal and adult mice. Am J Physiol Gastrointest Liver Physiol 309:G874–G887CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rohrer GV, Scott JR, Joel W, Wolf S (1965) The fine structure of human gastric parietal cells. Am J Dig Dis 10:13–21CrossRefPubMedGoogle Scholar
  41. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sato T, Clevers H (2015) SnapShot: growing organoids from stem cells. Cell 161:1700-1700 e1701 CrossRefGoogle Scholar
  43. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265CrossRefPubMedGoogle Scholar
  44. Schlaermann P, Toelle B, Berger H, Schmidt SC, Glanemann M, Ordemann J, Bartfeld S, Mollenkopf HJ, Meyer TF (2016) A novel human gastric primary cell culture system for modelling helicobacter pylori infection in vitro. Gut 65:202–213CrossRefPubMedGoogle Scholar
  45. Schumacher MA, Aihara E, Feng R, Engevik A, Shroyer NF, Ottemann KM, Worrell RT, Montrose MH, Shivdasani RA, Zavros Y (2015) The use of murine-derived fundic organoids in studies of gastric physiology. J Physiol 593:1809–1827CrossRefPubMedPubMedCentralGoogle Scholar
  46. Schwank G, Andersson-Rolf A, Koo BK, Sasaki N, Clevers H (2013) Generation of BAC transgenic epithelial organoids. PLoS ONE 8:e76871CrossRefPubMedPubMedCentralGoogle Scholar
  47. Silen W, Ito S (1985) Mechanisms for rapid re-epithelialization of the gastric mucosal surface. Annu Rev Physiol 47:217–229CrossRefPubMedGoogle Scholar
  48. Smith JM, Johanesen PA, Wendt MK, Binion DG, Dwinell MB (2005) CXCL12 activation of CXCR4 regulates mucosal host defense through stimulation of epithelial cell migration and promotion of intestinal barrier integrity. Am J Physiol Gastrointest Liver Physiol 288:G316–G326CrossRefPubMedGoogle Scholar
  49. Stelzner M, Helmrath M, Dunn JC, Henning SJ, Houchen CW, Kuo C, Lynch J, Li L, Magness ST, Martin MG, Wong MH, Yu J, Consortium NIHISC (2012) A nomenclature for intestinal in vitro cultures. Am J Physiol Gastrointest Liver Physiol 302:G1359–G1363CrossRefPubMedPubMedCentralGoogle Scholar
  50. Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA, Weinberg RA, Novina CD (2003) Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9:493–501CrossRefPubMedPubMedCentralGoogle Scholar
  51. VanDussen KL, Marinshaw JM, Shaikh N, Miyoshi H, Moon C, Tarr PI, Ciorba MA, Stappenbeck TS (2015) Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut 64:911–920CrossRefPubMedGoogle Scholar
  52. van de Wetering M, Oosterwegel M, Dooijes D, Clevers H (1991) Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J 10:123–132PubMedPubMedCentralGoogle Scholar
  53. Williams JM, Duckworth CA, Burkitt MD, Watson AJ, Campbell BJ, Pritchard DM (2015) Epithelial cell shedding and barrier function: a matter of life and death at the small intestinal villus tip. Vet Pathol 52:445–455CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, Ichinose S, Nagaishi T, Okamoto R, Tsuchiya K, Clevers H, Watanabe M (2012) Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med 18:618–623CrossRefPubMedGoogle Scholar
  55. Zeitoun P, Lambling A (1967) Ultrastructure of the gastric mucosa in human hemochromatosis. Scand J Gastroenterol 2:222–234CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • T. Andrew Sebrell
    • 1
  • Barkan Sidar
    • 2
  • Rachel Bruns
    • 1
  • Royce A. Wilkinson
    • 1
  • Blake Wiedenheft
    • 1
  • Paul J. Taylor
    • 3
  • Brian A. Perrino
    • 4
  • Linda C. Samuelson
    • 5
  • James N. Wilking
    • 2
  • Diane Bimczok
    • 1
    Email author
  1. 1.Department of Microbiology and ImmunologyMontana State UniversityBozemanUSA
  2. 2.Department of Chemical and Biological EngineeringMontana State UniversityBozemanUSA
  3. 3.GeneSearch, Inc.BozemanUSA
  4. 4.Department of Physiology & Cell Biology, Reno School of MedicineUniversity of NevadaRenoUSA
  5. 5.Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations