Cell and Tissue Research

, Volume 372, Issue 2, pp 403–415 | Cite as

Lessons from single-cell transcriptome analysis of oxygen-sensing cells

  • Ting ZhouEmail author
  • Hiroaki Matsunami


The advent of single-cell RNA-sequencing (RNA-Seq) technology has enabled transcriptome profiling of individual cells. Comprehensive gene expression analysis at the single-cell level has proven to be effective in characterizing the most fundamental aspects of cellular function and identity. This unbiased approach is revolutionary for small and/or heterogeneous tissues like oxygen-sensing cells in identifying key molecules. Here, we review the major methods of current single-cell RNA-Seq technology. We discuss how this technology has advanced the understanding of oxygen-sensing glomus cells in the carotid body and helped uncover novel oxygen-sensing cells and mechanisms in the mice olfactory system. We conclude by providing our perspective on future single-cell RNA-Seq research directed at oxygen-sensing cells.


Next-generation sequencing Hypoxia Arterial chemoreceptor Carotid body glomus cell Olfactory sensory neuron type B cell 



The authors’ work is supported by the Duke University Chancellor’s Discovery Award Program and the NIH R01 grants (DC012095 and DC014423).


  1. Aisenberg WH, Huang J, Zhu W, Rajkumar P, Cruz R, Santhanam L, Natarajan N, Yong HM, De Santiago B, Oh JJ, Yoon AR, Panettieri RA, Homann O, Sullivan JK, Liggett SB, Pluznick JL, An SS (2016) Defining an olfactory receptor function in airway smooth muscle cells. Sci Rep 6:38231PubMedPubMedCentralCrossRefGoogle Scholar
  2. Amir ED, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe’er D (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31:–545Google Scholar
  3. Angelova PR, Kasymov V, Christie I, Sheikhbahaei S, Turovsky E, Marina N, Korsak A, Zwicker J, Teschemacher AG, Ackland GL, Funk GD, Kasparov S, Abramov AY, Gourine AV (2015) Functional oxygen sensitivity of Astrocytes. J Neurosci 35:10460–10473PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bacher R, Kendziorski C (2016) Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol 17:63Google Scholar
  5. Balbir A, Lee H, Okumura M, Biswal S, Fitzgerald RS, Shirahata M (2007) A search for genes that may confer divergent morphology and function in the carotid body between two strains of mice. Am J Physiol Lung Cell Mol Physiol 292:L704–L715PubMedCrossRefGoogle Scholar
  6. Balsa E, Marco R, Perales-Clemente E, Szklarczyk R, Calvo E, Landazuri MO, Enriquez JA (2012) NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab 16:378–386PubMedCrossRefGoogle Scholar
  7. Blakeley P, Fogarty NME, del Valle I, Wamaitha SE, Hu TX, Elder K, Snell P, Christie L, Robson P, Niakan KK (2015) Defining the three cell lineages of the human blastocyst by single-cell RNA-seq (vol 142, pg 3151, 2015). Development 142:3613PubMedPubMedCentralCrossRefGoogle Scholar
  8. Brennecke P, Anders S, Kim JK, Kolodziejczyk AA, Zhang X, Proserpio V, Baying B, Benes V, Teichmann SA, Marioni JC, Heisler MG (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 10:1093–1095PubMedCrossRefGoogle Scholar
  9. Bright GR, Agani FH, Haque U, Overholt JL, Prabhakar NR (1996) Heterogeneity in cytosolic calcium responses to hypoxia in carotid body cells. Brain Res 706:297–302PubMedCrossRefGoogle Scholar
  10. Brophy S, Ford TW, Carey M, Jones JFX (1999) Activity of aortic chemoreceptors in the anaesthetized rat. J Physiol 514:821–828PubMedPubMedCentralCrossRefGoogle Scholar
  11. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187PubMedCrossRefGoogle Scholar
  12. Buckler KJ, Turner PJ (2013) Oxygen sensitivity of mitochondrial function in rat arterial chemoreceptor cells. J Physiol 591:3549–3563PubMedPubMedCentralCrossRefGoogle Scholar
  13. Buckler KJ, Vaughan-Jones RD (1994) Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells. J Physiol 476:423–428PubMedPubMedCentralCrossRefGoogle Scholar
  14. Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, Teichmann SA, Marioni JC, Stegie O (2015) Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol 33:155–160PubMedCrossRefGoogle Scholar
  15. Burns JC, Kelly MC, Hoa M, Morell RJ, Kelley MW (2015) Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear. Nat Commun 6:8557Google Scholar
  16. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng LX, Guo W, Zuker CS, Ryba NJP (2000) T2Rs function as bitter taste receptors. Cell 100:703–711PubMedCrossRefGoogle Scholar
  17. Chang AJ, Ortega FE, Riegler J, Madison DV, Krasnow MA (2015) Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature 527:240–244PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen RC, Wu XJ, Jiang L, Zhang Y (2017) Single-cell RNA-Seq reveals hypothalamic cell diversity. Cell Rep 18:3227–3241PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cuevas-Diaz Duran R, Wei H, Wu JQ (2017) Single-cell RNA-sequencing of the brain. Clin Transl Med 6:20PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cutz E, Pan J, Yeger H, Domnik NJ, Fisher JT (2013) Recent advances and contraversies on the role of pulmonary neuroepithelial bodies as airway sensors. Semin Cell Dev Biol 24:40–50PubMedCrossRefGoogle Scholar
  21. Dal Molin A, Baruzzo G, Di Camillo B (2017) Single-cell RNA-sequencing: assessment of differential expression analysis methods. Front Genet 8Google Scholar
  22. Delpiano MA, Acker H (1991) Hypoxia increases the cyclic AMP content of the cat carotid body in vitro. J Neurochem 57:291–297PubMedCrossRefGoogle Scholar
  23. Ding B, Zheng LN, Zhu Y, Li N, Jia HY, Ai RZ, Wildberg A, Wang W (2015) Normalization and noise reduction for single cell RNA-seq experiments. Bioinformatics 31:2225–2227PubMedPubMedCentralCrossRefGoogle Scholar
  24. Donnelly DF, Carroll JL (2005) Mitochondrial function and carotid body transduction. High Alt Med Biol 6:121–132PubMedCrossRefGoogle Scholar
  25. Duchen MR, Biscoe TJ (1992a) Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors. J Physiol 450:13–31PubMedPubMedCentralCrossRefGoogle Scholar
  26. Duchen MR, Biscoe TJ (1992b) Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body. J Physiol 450:33–61PubMedPubMedCentralCrossRefGoogle Scholar
  27. Duchen MR, Caddy KWT, Kirby GC, Patterson DL, Ponte J, Biscoe TJ (1988) Biophysical studies of the cellular-elements of the rabbit carotid-body. Neuroscience 26:291–311PubMedCrossRefGoogle Scholar
  28. Dulken BW, Leeman DS, Boutet SC, Hebestreit K, Brunet A (2017) Single-cell Transcriptomic analysis defines heterogeneity and transcriptional dynamics in the adult neural stem cell lineage. Cell Rep 18:777–790PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fagerlund MJ, Kahlin J, Ebberyd A, Schulte G, Mkrtchian S, Eriksson LI (2010) The human carotid body: expression of oxygen sensing and signaling genes of relevance for anesthesia. Anesthesiology 113:1270–1279PubMedCrossRefGoogle Scholar
  30. Fan HC, Fu GK, Fodor SPA (2015) Combinatorial labeling of single cells for gene expression cytometry. Science 347;1258367Google Scholar
  31. Fernandez-Aguera MC, Gao L, Gonzalez-Rodriguez P, Pintado CO, Arias-Mayenco I, Garcia-Flores P, Garcia-Perganeda A, Pascual A, Ortega-Saenz P, Lopez-Barneo J (2015) Oxygen sensing by arterial Chemoreceptors depends on mitochondrial complex I Signaling. Cell Metab 22:825–837PubMedCrossRefGoogle Scholar
  32. Fletcher RB, Das D, Gadye L, Street KN, Baudhuin A, Wagner A, Cole MB, Flores Q, Choi YG, Yosef N, Purdom E, Dudoit S, Risso D, Ngai J (2017) Deconstructing olfactory stem cell trajectories at single-cell resolution. Cell Stem Cell 20(817–830):e818Google Scholar
  33. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122PubMedCrossRefGoogle Scholar
  34. Furlan A, La Manno G, Lubke M, Haring M, Abdo H, Hochgerner H, Kupari J, Usoskin D, Airaksinen MS, Oliver G, Linnarsson S, Ernfors P (2016) Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. Nat Neurosci 19:1331–1340PubMedCrossRefGoogle Scholar
  35. Fuzik J, Zeisel A, Mate Z, Calvigioni D, Yanagawa Y, Szabo G, Linnarsson S, Harkany T (2016) Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat Biotechnol 34:175–183PubMedCrossRefGoogle Scholar
  36. Ganfornina MD, Perez-Garcia MT, Gutierrez G, Miguel-Velado E, Lopez-Lopez JR, Marin A, Sanchez D, Gonzalez C (2005) Comparative gene expression profile of mouse carotid body and adrenal medulla under physiological hypoxia. J Physiol 566:491–503PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gao L, Bonilla-Henao V, Garcia-Flores P, Arias-Mayenco I, Ortega-Saenz P, Lopez-Barneo J (2017) Gene expression analyses reveal metabolic specifications in acute O2 -sensing chemoreceptor cells. J Physiol.
  38. Gierahn TM, Wadsworth MH, Hughes TK, Bryson BD, Butler A, Satija R, Fortune S, Love JC, Shalek AK (2017) Seq-well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods 14:395–398PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gokce O, Stanley GM, Treutlein B, Neff NF, Camp JG, Malenka RC, Rothwell PE, Fuccillo MV, Sudhof TC, Quake SR (2016) Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-Seq. Cell Rep 16:1126–1137PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gonzalez C, Almaraz L, Obeso A, Rigual R (1994) Carotid-body Chemoreceptors - from natural stimuli to sensory discharges. Physiol Rev 74:829–898PubMedCrossRefGoogle Scholar
  41. Gray JM, Karow DS, Lu H, Chang AJ, Chang JS, Ellis RE, Marletta MA, Bargmann CI (2004) Oxygen sensation and social feeding mediated by a C. Elegans guanylate cyclase homologue. Nature 430:317–322PubMedCrossRefGoogle Scholar
  42. Grun D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, Clevers H, van Oudenaarden A (2015) Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525:251PubMedCrossRefGoogle Scholar
  43. Hanchate NK, Kondoh K, Lu ZH, Kuang DH, Ye XL, Qiu XJ, Pachter L, Trapnell C, Buck LB (2015) Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. Science 350:1251–1255PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L, Gennert D, Li SQ, Livak KJ, Rozenblatt-Rosen O, Dor Y, Regev A, Yanai I (2016) CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol 17:77Google Scholar
  45. Hashimshony T, Wagner F, Sher N, Yanai I (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2:666–673PubMedCrossRefGoogle Scholar
  46. Hatton CJ, Peers C (1996a) Cyclic nucleotide analogs do not interfere with hypoxic inhibition of K+ currents in isolated rat type I carotid body cells. Front Arterial Chemoreception 410:93–96CrossRefGoogle Scholar
  47. Hatton CJ, Peers C (1996b) Hypoxic inhibition of K+ currents in isolated rat type I carotid body cells: evidence against the involvement of cyclic nucleotides. Pflugers Arch 433:129–135PubMedCrossRefGoogle Scholar
  48. Islam S, Kjallquist U, Moliner A, Zajac P, Fan JB, Lonnerberg P, Linnarsson S (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21:1160–1167PubMedPubMedCentralCrossRefGoogle Scholar
  49. Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lonnerberg P, Linnarsson S (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11:163–166PubMedCrossRefGoogle Scholar
  50. Jaakkola MK, Seyednasrollah F, Mehmood A, Elo LL (2016) Comparison of methods to detect differentially expressed genes between single-cell populations. Brief BioinformGoogle Scholar
  51. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A, Amit I (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:776–779PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jiang LC, Schlesinger F, Davis CA, Zhang Y, Li RH, Salit M, Gingeras TR, Oliver B (2011) Synthetic spike-in standards for RNA-seq experiments. Genome Res 21:1543–1551PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kivioja T, Vaharautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, Taipale J (2012) Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods 9:72–U183CrossRefGoogle Scholar
  54. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW (2015) Droplet Barcoding for single-cell Transcriptomics applied to embryonic stem cells. Cell 161:1187–1201PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58:610–620PubMedCrossRefGoogle Scholar
  56. Kumar P (2009) Systemic effects resulting from carotid body stimulation-invited article. Adv Exp Med Biol 648:223–233PubMedCrossRefGoogle Scholar
  57. Kumar P, Bin-Jaliah I (2007) Adequate stimuli of the carotid body: more than an oxygen sensor? Respir Physiol Neurobiol 157:12–21PubMedCrossRefGoogle Scholar
  58. Kumar P, Prabhakar NR (2012) Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol 2:141–219PubMedPubMedCentralGoogle Scholar
  59. Lahiri S, Forster RE 2nd (2003) CO2/H(+) sensing: peripheral and central chemoreception. Int J Biochem Cell Biol 35:1413–1435PubMedCrossRefGoogle Scholar
  60. Lahiri S, Roy A, Baby SM, Hoshi T, Semenza GL, Prabhakar NR (2006) Oxygen sensing in the body. Prog Biophys Mol Biol 91:249–286PubMedCrossRefGoogle Scholar
  61. Linnarsson S (2015) Sequencing single cells reveals sequential stem cell states. Cell Stem Cell 17:251–252PubMedCrossRefGoogle Scholar
  62. Lopez-Barneo J, Gonzalez-Rodriguez P, Gao L, Fernandez-Aguera MC, Pardal R, Ortega-Saenz P (2016) Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am J Physiol-Cell Physiol 310:C629–C642PubMedCrossRefGoogle Scholar
  63. Lopez-Barneo J, Lopez-Lopez JR, Urena J, Gonzalez C (1988) Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241:580–582PubMedCrossRefGoogle Scholar
  64. Lopez-Lopez JR, De Luis DA, Gonzalez C (1993) Properties of a transient K+ current in chemoreceptor cells of rabbit carotid body. J Physiol 460:15–32PubMedPubMedCentralCrossRefGoogle Scholar
  65. LopezBarneo J (1996) Oxygen-sensing by ion channels and the regulation of cellular functions. Trends Neurosci 19:435–440CrossRefGoogle Scholar
  66. Luo L, Salunga RC, Guo HQ, Bittner A, Joy KC, Galindo JE, Xiao HN, Rogers KE, Wan JS, Jackson MR, Erlander MG (1999) Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat Med 5:117–122PubMedCrossRefGoogle Scholar
  67. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015) Highly parallel genome-wide expression profiling of individual cells using Nanoliter droplets. Cell 161:1202–1214PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mills E, Jobsis FF (1970) Simultaneous measurement of cytochrome a3 reduction and chemoreceptor afferent activity in the carotid body. Nature 225:1147–1149PubMedCrossRefGoogle Scholar
  69. Mills E, Jobsis FF (1972) Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J Neurophysiol 35:405–428PubMedCrossRefGoogle Scholar
  70. Mir AK, Pallot DJ, Nahorski SR (1983) Biogenic amine-stimulated cyclic adenosine-3′,5′-monophosphate formation in the rat carotid body. J Neurochem 41:663–669PubMedCrossRefGoogle Scholar
  71. Mkrtchian S, Kahlin J, Ebberyd A, Gonzalez C, Sanchez D, Balbir A, Kostuk EW, Shirahata M, Fagerlund MJ, Eriksson LI (2012) The human carotid body transcriptome with focus on oxygen sensing and inflammation--a comparative analysis. J Physiol 590:3807–3819PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mojet MH, Mills E, Duchen MR (1997) Hypoxia-induced catecholamine secretion in isolated newborn rat adrenal chromaffin cells is mimicked by inhibition of mitochondrial respiration. J Physiol 504:175–189PubMedPubMedCentralCrossRefGoogle Scholar
  73. Muller S, Diaz A (2017) Single-cell mRNA sequencing in cancer research: integrating the genomic fingerprint. Front Genet 8:73PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mulligan E, Lahiri S (1982) Separation of carotid-body chemoreceptor responses to O2 and Co2 by Oligomycin and by Antimycin-a. Am J Phys 242:C200–C206CrossRefGoogle Scholar
  75. Mulligan E, Lahiri S, Storey BT (1981) Carotid-body O2 chemoreception and mitochondrial oxidative-Phosphorylation. J Appl Physiol 51:438–446PubMedCrossRefGoogle Scholar
  76. Nunes AR, Batuca JR, Monteiro EC (2010) Acute hypoxia modifies cAMP levels induced by inhibitors of phosphodiesterase-4 in rat carotid bodies, carotid arteries and superior cervical ganglia. Br J Pharmacol 159:353–361PubMedPubMedCentralCrossRefGoogle Scholar
  77. Nurse CA, Buttigieg J, Thompson R, Zhang M, Cutz E (2006) Oxygen sensing in neuroepithelial and adrenal chromaffin cells. Novartis Found Symp 272:106–114 discussion 114-108, 131-140>PubMedGoogle Scholar
  78. Ofengeim D, Giagtzoglou N, Huh D, Zou CY, Yuan JY (2017) Single-cell RNA sequencing: Unraveling the brain one cell at a time. Trends Mol Med 23:563–576PubMedCrossRefPubMedCentralGoogle Scholar
  79. Omura M, Mombaerts P (2014) Trpc2-expressing sensory neurons in the main olfactory epithelium of the mouse. Cell Rep 8:582–594CrossRefGoogle Scholar
  80. Omura M, Mombaerts P (2015) Trpc2-expressing sensory neurons in the mouse main olfactory epithelium of type B express the soluble guanylate cyclase Gucy1b2. Mol Cell Neurosci 65:114–124PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ortega-Saenz P, Pardal R, Garcia-Fernandez M, Lopez-Barneo J (2003) Rotenone selectively occludes sensitivity to hypoxia in rat carotid body glomus cells. J Physiol 548:789–800PubMedPubMedCentralCrossRefGoogle Scholar
  82. Palczewski K (2006) G protein-coupled receptor rhodopsin. Annu Rev Biochem 75:743–767PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pardal R, Lopez-Barneo J (2002a) Carotid body thin slices: responses of glomus cells to hypoxia and K+−channel blockers. Respir Physiol Neurobiol 132:69–79PubMedCrossRefGoogle Scholar
  84. Pardal R, Lopez-Barneo J (2002b) Low glucose-sensing cells in the carotid body. Nat Neurosci 5:197–198PubMedCrossRefGoogle Scholar
  85. Pardal R, Ortega-Saenz P, Duran R, Lopez-Barneo J (2007) Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 131:364–377PubMedCrossRefGoogle Scholar
  86. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, Louis DN, Rozenblatt-Rosen O, Suva ML, Regev A, Bernstein BE (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401PubMedPubMedCentralCrossRefGoogle Scholar
  87. Peng YJ, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci U S A 107:10719–10724PubMedPubMedCentralCrossRefGoogle Scholar
  88. Perezgarcia MT, Almaraz L, Gonzalez C (1990) Effects of different types of stimulation on cyclic-amp content in the rabbit carotid-body - functional-significance. J Neurochem 55:1287–1293CrossRefGoogle Scholar
  89. Petropoulos S, Edsgard D, Reinius B, Deng QL, Panula SP, Codeluppi S, Reyes AP, Linnarsson S, Sandberg R, Lanner F (2016) Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human Preimplantation embryos (vol 165, pg 1012, 2016). Cell 167:285–285PubMedPubMedCentralCrossRefGoogle Scholar
  90. Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10:1096–1098PubMedCrossRefGoogle Scholar
  91. Piskuric NA, Nurse CA (2012) Effects of chemostimuli on [Ca2+](i) responses of rat aortic body type I cells and endogenous local neurons: comparison with carotid body cells. J Physiol 590:2121–2135PubMedPubMedCentralCrossRefGoogle Scholar
  92. Pitceathly RD, Rahman S, Wedatilake Y, Polke JM, Cirak S, Foley AR, Sailer A, Hurles ME, Stalker J, Hargreaves I, Woodward CE, Sweeney MG, Muntoni F, Houlden H, Taanman JW, Hanna MG, Consortium UK (2013) NDUFA4 mutations underlie dysfunction of a cytochrome c oxidase subunit linked to human neurological disease. Cell Rep 3:1795–1805PubMedPubMedCentralCrossRefGoogle Scholar
  93. Platero-Luengo A, Gonzalez-Granero S, Duran R, Diaz-Castro B, Piruat JI, Garcia-Verdugo JM, Pardal R, Lopez-Barneo J (2014) An O2-sensitive glomus cell-stem cell synapse induces carotid body growth in chronic hypoxia. Cell 156:291–303PubMedCrossRefGoogle Scholar
  94. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, Brunet I, Wan LX, Rey F, Wang T, Firestein SJ, Yanagisawa M, Gordon JI, Eichmann A, Peti-Peterdi J, Caplan MJ (2013) Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A 110:4410–4415PubMedPubMedCentralCrossRefGoogle Scholar
  95. Poirion OB, Zhu X, Ching T, Garmire L (2016) Single-cell Transcriptomics bioinformatics and computational challenges. Front Genet 7Google Scholar
  96. Pollen AA, Nowakowski TJ, Shuga J, Wang XH, Leyrat AA, Lui JH, Li NZ, Szpankowski L, Fowler B, Chen PL, Ramalingam N, Sun G, Thu M, Norris M, Lebofsky R, Toppani D, Kemp DW, Wong M, Clerkson B, Jones BN, Wu SQ, Knutsson L, Alvarado B, Wang J, Weaver LS, May AP, Jones RC, Unger MA, Kriegstein AR, West JAA (2014) Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol 32:1053PubMedPubMedCentralCrossRefGoogle Scholar
  97. Prabhakar NR (2013) Sensing hypoxia: physiology, genetics and epigenetics. J Physiol 591:2245–2257PubMedPubMedCentralCrossRefGoogle Scholar
  98. Ramskold D, Luo SJ, Wang YC, Li R, Deng QL, Faridani OR, Daniels GA, Khrebtukova I, Loring JF, Laurent LC, Schroth GP, Sandberg R (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30:777–782PubMedPubMedCentralCrossRefGoogle Scholar
  99. Rico AJ, Prieto-Lloret J, Gonzalez C, Rigual R (2005) Hypoxia and acidosis increase the secretion of catecholamines in the neonatal rat adrenal medulla: an in vitro study. Am J Physiol-Cell Physiol 289:C1417–C1425PubMedCrossRefGoogle Scholar
  100. Risso D, Ngai J, Speed TP, Dudoit S (2014) Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol 32:896–902PubMedPubMedCentralCrossRefGoogle Scholar
  101. Rocher A, Caceres AI, Almaraz L, Gonzalez C (2009) EPAC signalling pathways are involved in low PO2 chemoreception in carotid body chemoreceptor cells. J Physiol 587:4015–4027PubMedPubMedCentralCrossRefGoogle Scholar
  102. Rostom R, Svensson V, Teichmann SA, Kar G (2017) Computational approaches for interpreting scRNA-seq data. FEBS LettGoogle Scholar
  103. Saliba AE, Westermann AJ, Gorski SA, Vogel J (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42:8845–8860PubMedPubMedCentralCrossRefGoogle Scholar
  104. Saraiva LR, Ibarra-Soria X, Khan M, Omura M, Scialdone A, Mombaerts P, Marioni JC, Logan DW (2015) Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq. Sci Rep 5:18178Google Scholar
  105. Sasagawa Y, Nikaido I, Hayashi T, Danno H, Uno KD, Imai T, Ueda HR (2013) Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol 14:R31Google Scholar
  106. Setty M, Tadmor MD, Reich-Zeliger S, Ange O, Salame TM, Kathail P, Choi K, Bendall S, Friedman N, Pe’er D (2016) Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol 34:637–645PubMedPubMedCentralCrossRefGoogle Scholar
  107. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, Schwartz S, Yosef N, Malboeuf C, Lu DN, Trombetta JJ, Gennert D, Gnirke A, Goren A, Hacohen N, Levin JZ, Park H, Regev A (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498:236–240PubMedPubMedCentralCrossRefGoogle Scholar
  108. Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu DN, Chen PL, Gertner RS, Gaublomme JT, Yosef N, Schwartz S, Fowler B, Weaver S, Wang J, Wang XH, Ding RH, Raychowdhury R, Friedman N, Hacohen N, Park H, May AP, Regev A (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510:363PubMedPubMedCentralCrossRefGoogle Scholar
  109. Shimoda LA, Polak J (2011) Hypoxia. 4. Hypoxia and ion channel function. Am J Physiol Cell Physiol 300:C951–C967PubMedCrossRefGoogle Scholar
  110. Sommer N, Huttemann M, Pak O, Scheibe S, Knopp F, Sinkler C, Malczyk M, Gierhardt M, Esfandiary A, Kraut S, Jonas FT, Veith C, Aras S, Sydykov A, Alebrahimdehkordi N, Giehl K, Hecker M, Brandes RP, Seeger W, Grimminger F, Ghofrani HA, Schermuly RT, Grossman LI, Weissmann N (2017) Mitochondrial Complex IV Subunit 4 Isoform 2 Is Essential for Acute Pulmonary Oxygen Sensing. Circ ResGoogle Scholar
  111. Streller T, Huckstorf C, Pfeiffer C, Acker H (2002) Unusual cytochrome a(592) with low PO2 affinity correlates as putative oxygen sensor with rat carotid body chemoreceptor discharge. FASEB J 16:1277PubMedCrossRefGoogle Scholar
  112. Sun LM, Wang HY, Hua J, Han JL, Matsunamic H, Luo MM (2009) Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Natl Acad Sci U S A 106:2041–2046PubMedPubMedCentralCrossRefGoogle Scholar
  113. Svensson V, Natarajan KN, Ly LH, Miragaia RJ, Labalette C, Macaulay IC, Cvejic A, Teichmann SA (2017) Power analysis of single-cell RNA-sequencing experiments. Nat Methods 14:381PubMedPubMedCentralCrossRefGoogle Scholar
  114. Tang FC, Barbacioru C, Nordman E, Li B, Xu NL, Bashkirov VI, Lao KQ, Surani MA (2010) RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc 5:516–535PubMedCrossRefGoogle Scholar
  115. Tang FC, Barbacioru C, Wang YZ, Nordman E, Lee C, Xu NL, Wang XH, Bodeau J, Tuch BB, Siddiqui A, Lao KQ, Surani MA (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6:377–U386PubMedCrossRefGoogle Scholar
  116. Tang FC, Lao KQ, Surani MA (2011) Development and applications of single-cell transcriptome analysis. Nat Methods 8:S6–S11PubMedPubMedCentralCrossRefGoogle Scholar
  117. Tello D, Balsa E, Acosta-Iborra B, Fuertes-Yebra E, Elorza A, Ordonez A, Corral-Escariz M, Soro I, Lopez-Bernardo E, Perales-Clemente E, Martinez-Ruiz A, Enriquez JA, Aragones J, Cadenas S, Landazuri MO (2011) Induction of the mitochondrial NDUFA4L2 protein by HIF-1alpha decreases oxygen consumption by inhibiting complex I activity. Cell Metab 14:768–779PubMedCrossRefGoogle Scholar
  118. Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, Murphy G, Fallahi-Sichani M, Dutton-Regester K, Lin JR, Cohen O, Shah P, Lu D, Genshaft AS, Hughes TK, Ziegler CGK, Kazer SW, Gaillard A, Kolb KE, Villani AC, Johannessen CM, Andreev AY, Van Allen EM, Bertagnolli M, Sorger PK, Sullivan RJ, Flaherty KT, Frederick DT, Jane-Valbuena J, Yoon CH, Rozenblatt-Rosen O, Shalek AK, Regev A, Garraway LA (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352:189–196PubMedPubMedCentralCrossRefGoogle Scholar
  119. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li SQ, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–U251PubMedPubMedCentralCrossRefGoogle Scholar
  120. Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249PubMedCrossRefGoogle Scholar
  121. Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, Desai TJ, Krasnow MA, Quake SR (2014) Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509:371PubMedPubMedCentralCrossRefGoogle Scholar
  122. Treutlein B, Lee QY, Camp JG, Mall M, Koh W, Shariati SA, Sim S, Neff NF, Skotheim JM, Wernig M, Quake SR (2016) Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature 534:391–395PubMedPubMedCentralCrossRefGoogle Scholar
  123. Urena J, Fernandezchacon R, Benot AR, Detoledo GA, Lopezbarneo J (1994) Hypoxia induces voltage-dependent Ca2+ entry and Quantal dopamine secretion in carotid-body Glomus cells. Proc Natl Acad Sci U S A 91:10208–10211PubMedPubMedCentralCrossRefGoogle Scholar
  124. Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P, Lou D, Hjerling-Leffler J, Haeggstrom J, Kharchenko O, Kharchenko PV, Linnarsson S, Ernfors P (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18:145PubMedCrossRefGoogle Scholar
  125. Vallejos CA, Marioni JC, Richardson S (2015) BASiCS: Bayesian analysis of single-cell sequencing data. PLoS Comput Biol 11:e1004333Google Scholar
  126. van der Maaten L, Hinton G (2008) Visualizing Data using t-SNE. J Mach Learn Res 9:2579–2605Google Scholar
  127. Vermehren-Schmaedick A, Ainsley JA, Johnson WA, Davies SA, Morton DB (2010) Behavioral responses to hypoxia in drosophila larvae are mediated by atypical soluble guanylyl cyclases. Genetics 186:183–196PubMedPubMedCentralCrossRefGoogle Scholar
  128. Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, Griesbeck M, Butler A, Zheng SW, Lazo S, Jardine L, Dixon D, Stephenson E, Nilsson E, Grundberg I, McDonald D, Filby A, Li WB, De Jager PL, Rozenblatt-Rosen O, Lane AA, Haniffa M, Regev A, Hacohen N (2017) Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356:283CrossRefGoogle Scholar
  129. Wang J, Shimoda LA, Weigand L, Wang WQ, Sun DJ, Sylvester JT (2005) Acute hypoxia increases intracellular [Ca2+] in pulmonary arterial smooth muscle by enhancing capacitative Ca2+ entry. Am J Physiol-Lung C 288:L1059–L1069CrossRefGoogle Scholar
  130. Wang LX, Janes KA (2013) Stochastic profiling of transcriptional regulatory heterogeneities in tissues, tumors and cultured cells. Nat Protoc 8:282–301PubMedCrossRefGoogle Scholar
  131. Wang WJ, Cheng GF, Dinger BG, Fidone SJ (1989) Effects of hypoxia on cyclic nucleotide formation in rabbit carotid body in vitro. Neurosci Lett 105:164–168PubMedCrossRefGoogle Scholar
  132. Wang WJ, Cheng GF, Yoshizaki K, Dinger B, Fidone S (1991) The role of cyclic AMP in chemoreception in the rabbit carotid body. Brain Res 540:96–104PubMedCrossRefGoogle Scholar
  133. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedPubMedCentralCrossRefGoogle Scholar
  134. Weir EK, Cabrera JA, Olschewski A, Obretchikova M, Kelly RF, Jhanjee R, Hong ZG (2007) Acute oxygen sensing mechanisms. Nato Sci Peace Sec A 295−+Google Scholar
  135. Weir EK, Wyatt CN, Reeve HL, Huang J, Archer SL, Peers C (1994) Diphenyleneiodonium inhibits both potassium and calcium currents in isolated pulmonary-artery smooth-muscle cells. J Appl Physiol 76:2611–2615PubMedCrossRefGoogle Scholar
  136. Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL, Sim S, Clarke MF, Quake SR (2014) Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods 11:41–46PubMedCrossRefGoogle Scholar
  137. Xue ZG, Huang K, Cai CC, Cai LB, Jiang CY, Feng Y, Liu ZS, Zeng Q, Cheng LM, Sun YE, Liu JY, Horvath S, Fan GP (2013) Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500:593PubMedPubMedCentralCrossRefGoogle Scholar
  138. Youngson C, Nurse C, Yeger H, Cutz E (1993) Oxygen sensing in airway Chemoreceptors. Nature 365:153–155PubMedCrossRefGoogle Scholar
  139. Yuan G, Vasavda C, Peng YJ, Makarenko VV, Raghuraman G, Nanduri J, Gadalla MM, Semenza GL, Kumar GK, Snyder SH, Prabhakar NR (2015) Protein kinase G-regulated production of H2S governs oxygen sensing. Sci Signal 8:ra37PubMedPubMedCentralCrossRefGoogle Scholar
  140. Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S (2015a) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142PubMedCrossRefGoogle Scholar
  141. Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, Marques S, Munguba H, He LQ, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S (2015b) Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142PubMedCrossRefGoogle Scholar
  142. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu JJ, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8Google Scholar
  143. Zhou T, Chien MS, Kaleem S, Matsunami H (2016) Single cell transcriptome analysis of mouse carotid body glomus cells. J Physiol 594:4225–4251PubMedPubMedCentralCrossRefGoogle Scholar
  144. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, Enard W (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65:631PubMedCrossRefGoogle Scholar
  145. Zimmer M, Gray JM, Pokala N, Chang AJ, Karow DS, Marletta MA, Hudson ML, Morton DB, Chronis N, Bargmann CI (2009) Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron 61:865–879PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamUSA
  2. 2.Department of Neurobiology and Duke Institute for Brain SciencesDuke University Medical CenterDurhamUSA

Personalised recommendations