Skip to main content

Advertisement

Log in

Combined effects of oscillating hydrostatic pressure, perfusion and encapsulation in a novel bioreactor for enhancing extracellular matrix synthesis by bovine chondrocytes

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

A Correction to this article was published on 22 October 2018

This article has been updated

Abstract

The influence of combined shear stress and oscillating hydrostatic pressure (OHP), two forms of physical forces experienced by articular cartilage (AC) in vivo, on chondrogenesis, is investigated in a unique bioreactor system. Our system introduces a single reaction chamber design that does not require transfer of constructs after seeding to a second chamber for applying the mechanical forces, and, as such, biochemical and mechanical stimuli can be applied in combination. The biochemical and mechanical properties of bovine articular chondrocytes encapsulated in agarose scaffolds cultured in our bioreactors for 21 days are compared to cells statically cultured in agarose scaffolds in addition to static micromass and pellet cultures. Our findings indicate that glycosaminoglycan and collagen secretions were enhanced by at least 1.6-fold with scaffold encapsulation, 5.9-fold when adding 0.02 Pa of shear stress and 7.6-fold with simultaneous addition of 4 MPa of OHP when compared to micromass samples. Furthermore, shear stress and OHP have chondroprotective effects as evidenced by lower mRNA expression of β1 integrin and collagen X to non-detectable levels and an absence of collagen I upregulation as observed in micromass controls. These collective results are further supported by better mechanical properties as indicated by 1.6–19.8-fold increases in elastic moduli measured by atomic force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 22 October 2018

    Due to an oversight, Fig. 1(a, b) and Fig. 2 in Nazempour et al. (2017) Cell Tissue Res 370:179–193 DOI https://doi.org/10.1007/s00441-017-2651-7 should have a copyright acknowledgement added as follows: Schematics in Fig. 1(a, b) modified from Nazempour et al. (2016) (Copyright American Scientific Publishers).

References

  • Abu-Lail NI, Camesano TA (2006) The effect of solvent polarity on the molecular surface properties and adhesion of Escherichia coli. Coll Surf B 51:62–70

    CAS  Google Scholar 

  • Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21:451–457

    CAS  PubMed  Google Scholar 

  • Angele P, Schumann D, Angele M, Kinner B, Englert C, Hente R, Fuchtmeier B, Nerlich M, Neumann C, Kujat R (2004) Cyclic, mechanical compression enhances chondrogenesis of mesenchymal progenitor cells in tissue engineering scaffolds. Biorheology 41:335–346

    CAS  PubMed  Google Scholar 

  • Appelman TP, Mizrahi J, Elisseeff JH, Seliktar D (2009) The differential effect of scaffold composition and architecture on chondrocyte response to mechanical stimulation. Biomaterials 30:518–525

    CAS  PubMed  Google Scholar 

  • Ateshian G, Hung C (2003) Functional properties of native articular cartilage. In: Guilak F, Butler D, Goldstein S, Mooney D (eds) Functional tissue engineering. Springer, New York, pp 46–68

  • Augst A, Marolt D, Freed LE, Vepari C, Meinel L, Farley M, Fajardo R, Patel N, Gray M, Kaplan DL, Vunjak-Novakovic G (2008) Effects of chondrogenic and osteogenic regulatory factors on composite constructs grown using human mesenchymal stem cells, silk scaffolds and bioreactors. J R Soc Interface 5:929–939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badger AM, Cook MN, Lark MW, Newman-Tarr TM, Swift BA, Nelson AH, Barone FC, Kumar S (1998) SB 203580 inhibits p38 mitogen-activated protein kinase, nitric oxide production, and inducible nitric oxide synthase in bovine cartilage-derived chondrocytes. J Immunol 161:467–473

    CAS  PubMed  Google Scholar 

  • Barbero A, Grogan S, Schafer D, Heberer M, Mainil-Varlet P, Martin I (2004) Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage 12:476–484

    PubMed  Google Scholar 

  • Barquins M, Maugis D (1982) Adhesive contact of axisymmetric punches on an elastic half-space-the modified Hertz-Hubers stress tensor for contacting spheres. J Mec Theor Appl 1:331–357

    Google Scholar 

  • Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224

    CAS  PubMed  Google Scholar 

  • Bian L, Fong JV, Lima EG, Stoker AM, Ateshian GA, Cook JL, Hung CT (2010) Dynamic mechanical loading enhances functional properties of tissue-engineered cartilage using mature canine chondrocytes. Tissue Eng Part A 16:1781–1790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bigdeli N, Karlsson C, Strehl R, Concaro S, Hyllner J, Lindahl A (2009) Coculture of human embryonic stem cells and human articular chondrocytes results in significantly altered phenotype and improved chondrogenic differentiation. Stem Cells 27:1812–1821

    PubMed  Google Scholar 

  • Bilgen B, Chu D, Stefani R, Aaron RK (2013) Design of a biaxial mechanical loading bioreactor for tissue engineering. J Vis Exp 25:50387

  • Buschmann MD, Gluzband YA, Grodzinsky AJ, Kimura JH, Hunziker EB (1992) Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J Orthop Res 10:745–758

    CAS  PubMed  Google Scholar 

  • Campbell JJ, Lee DA, Bader DL (2006) Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells. Biorheology 43:455–470

    PubMed  Google Scholar 

  • Chai DH, Arner EC, Griggs DW, Grodzinsky AJ (2010) αv and β1 integrins regulate dynamic compression–induced proteoglycan synthesis in 3D gel culture by distinct complementary pathways. Osteoarthritis Cartilage 18:249

    CAS  PubMed  Google Scholar 

  • Chao PH, Grayson W, Vunjak-Novakovic G (2007) Engineering cartilage and bone using human mesenchymal stem cells. J Orthop Sci 12(4):398–404

    PubMed  PubMed Central  Google Scholar 

  • Chiang H, Hsieh CH, Lin YH, Lin S, Tsai-Wu JJ, Jiang CC (2011) Differences between chondrocytes and bone marrow-derived chondrogenic cells. Tissue Eng Part A 17:2919–2929

    CAS  PubMed  Google Scholar 

  • Coles JM, Blum JJ, Jay GD, Darling EM, Guilak F, Zauscher S (2008) In situ friction measurement on murine cartilage by atomic force microscopy. J Biomech 41:541–548

    PubMed  Google Scholar 

  • Cooke ME, Allon AA, Cheng T, Kuo AC, Kim HT, Vail TP, Marcucio RS, Schneider RA, Lotz JC, Alliston T (2011) Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy. Osteoarthritis Cartilage 19:1210–1218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD (2012) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 18:1304–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curcio E, Piscioneri A, Morelli S, Salerno S, Macchiarini P, De Bartolo L (2014) Kinetics of oxygen uptake by cells potentially used in a tissue engineered trachea. Biomaterials 35:6829–6837

    CAS  PubMed  Google Scholar 

  • Darling EM, Topel M, Zauscher S, Vail TP, Guilak F (2008) Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J Biomech 41:454–464

    PubMed  Google Scholar 

  • Davisson T, Sah RL, Ratcliffe A (2002) Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng 8:807–816

    CAS  PubMed  Google Scholar 

  • DeGroot J, Verzijl N, Bank RA, Lafeber FP, Bijlsma JW, TeKoppele JM (1999) Age-related decrease in proteoglycan synthesis of human articular chondrocytes: the role of nonenzymatic glycation. Arthritis Rheum 42:1003–1009

    CAS  PubMed  Google Scholar 

  • Detzel CJ, Van Wie BJ (2011) Use of a centrifugal bireactor for cartilaginous tssue frmation from iolated condrocytes. Biotechnol Prog 27:451–459

  • Elder BD, Athanasiou KA (2008) Synergistic and additive effects of hydrostatic pressure and growth factors on tissue formation. PLoS ONE 3:e2341

    PubMed  PubMed Central  Google Scholar 

  • Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4:30–35

    CAS  PubMed  Google Scholar 

  • Farndale R, Buttle D, Barrett A (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177

    CAS  PubMed  Google Scholar 

  • Fischer-Cripps AC (1999) The Hertzian contact surface. J Mater Sci 34:129–137

    CAS  Google Scholar 

  • Freeman PM, Natarajan RN, Kimura JH, Andriacchi TP (1994) Chondrocyte cells respond mechanically to compressive loads. J Orthop Res 12:311–320

    CAS  PubMed  Google Scholar 

  • Fukuda K, Dan H, Takayama M, Kumano F, Saitoh M, Tanaka S (1996) Hyaluronic acid increases proteoglycan synthesis in bovine articular cartilage in the presence of interleukin-1. J Pharmacol Exper Thera 277:1672–1675

    CAS  Google Scholar 

  • Gemmiti CV, Guldberg RE (2006) Fluid flow increases type II collagen deposition and tensile mechanical properties in bioreactor-grown tissue-engineered cartilage. Tissue Eng 12:469–479

    CAS  PubMed  Google Scholar 

  • Gharravi AM, Orazizadeh M, Hashemitabar M (2016) Fluid-induced low shear stress improves cartilage like tissue fabrication by encapsulating chondrocytes. Cell Tissue Bank 17:117–122

    CAS  PubMed  Google Scholar 

  • Giovannini S, Diaz-Romero J, Aigner T, Heini P, Mainil-Varlet P, Nesic D (2010a) Micromass co-culture of human articular chondrocytes and human bone marrow mesenchymal stem cells to investigate stable neocartilage tissue formation in vitro. Eur Cells Mater 20:245–259

    CAS  Google Scholar 

  • Giovannini S, Diaz-Romero J, Aigner T, Mainil-Varlet P, Nesic D (2010b) Population doublings and percentage of S100-positive cells as predictors of in vitro chondrogenicity of expanded human articular chondrocytes. J Cell Physiol 222:411–420

    CAS  PubMed  Google Scholar 

  • Grashoff C, Aszodi A, Sakai T, Hunziker EB, Fassler R (2003) Integrin-linked kinase regulates chondrocyte shape and proliferation. EMBO Rep 4:432–438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grogan SP, Sovani S, Pauli C, Chen J, Hartmann A, Colwell CW Jr, Lotz MK, D’Lima DD (2012) Effects of perfusion and dynamic loading on human neocartilage formation in alginate hydrogels. Tissue Eng Part A 18:1784–1792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall AC, Urban JP, Gehl KA (1991) The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J Orthop Res 9:1–10

    CAS  PubMed  Google Scholar 

  • Hansen U, Schunke M, Domm C, Ioannidis N, Hassenpflug J, Gehrke T, Kurz B (2001) Combination of reduced oxygen tension and intermittent hydrostatic pressure: a useful tool in articular cartilage tissue engineering. J Biomech 34:941–949

    CAS  PubMed  Google Scholar 

  • Hasty RT, Garbalosa RC, Barbato VA, Valdes PJ Jr, Powers DW, Hernandez E, John JS, Suciu G, Qureshi F, Popa-Radu M, San Jose S, Drexler N, Patankar R, Paz JR, King CW, Gerber HN, Valladares MG, Somji AA (2014) Wikipedia vs peer-reviewed medical literature for information about the 10 most costly medical conditions. J Am Osteopath Assoc 114:368–373

    PubMed  Google Scholar 

  • Hering TM, Kollar J, Huynh TD, Varelas JB, Sandell LJ (1994) Modulation of extracellular matrix gene expression in bovine high-density chondrocyte cultures by ascorbic acid and enzymatic resuspension. Arch Biochem Biophys 314:90–98

    CAS  PubMed  Google Scholar 

  • Hu JC, Athanasiou KA (2006) The effects of intermittent hydrostatic pressure on self-assembled articular cartilage constructs. Tissue Eng 12:1337–1344

    CAS  PubMed  Google Scholar 

  • Huang CYC, Hagar KL, Frost LE, Sun YB, Cheung HS (2004) Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22:313–323

    CAS  PubMed  Google Scholar 

  • Huang AH, Yeger-McKeever M, Stein A, Mauck RL (2008) Tensile properties of engineered cartilage formed from chondrocyte- and MSC-laden hydrogels. Osteoarthritis Cartilage 16:1074–1082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang NS, Im SG, Wu PB, Bichara DA, Zhao X, Randolph MA, Langer R, Anderson DG (2011) Chondrogenic priming adipose-mesenchymal stem cells for cartilage tissue regeneration. Pharm Res 28:1395–1405

    CAS  PubMed  Google Scholar 

  • Karlsson C, Brantsing C, Svensson T, Brisby H, Asp J, Tallheden T, Lindahl A (2007) Differentiation of human mesenchymal stem cells and articular chondrocytes: analysis of chondrogenic potential and expression pattern of differentiation-related transcription factors. J Orthop Res 25:152–163

    CAS  PubMed  Google Scholar 

  • Kaupp JA, Weber JF, Waldman SD (2012) Mechanical stimulation of chondrocyte-agarose hydrogels. J Vis Exp 27:4229

  • Kawanishi M, Oura A, Furukawa K, Fukubayashi T, Nakamura K, Tateishi T, Ushida T (2007) Redifferentiation of dedifferentiated bovine articular chondrocytes enhanced by cyclic hydrostatic pressure under a gas-controlled system. Tissue Eng 13:957–964

    CAS  PubMed  Google Scholar 

  • Kelly TA, Ng KW, Wang CC, Ateshian GA, Hung CT (2006) Spatial and temporal development of chondrocyte-seeded agarose constructs in free-swelling and dynamically loaded cultures. J Biomech 39:1489–1497

    PubMed  Google Scholar 

  • Kessler MW, Grande DA (2008) Tissue engineering and cartilage. Organogenesis 4:28–32

    PubMed  PubMed Central  Google Scholar 

  • Khan AA, Suits JM, Kandel RA, Waldman SD (2009) The effect of continuous culture on the growth and structure of tissue-engineered cartilage. Biotechnol Prog 25:508–515

    CAS  PubMed  Google Scholar 

  • Knudson W, Loeser RF (2002) CD44 and integrin matrix receptors participate in cartilage homeostasis. Cell Mol Life Sci 59:36–44

    CAS  PubMed  Google Scholar 

  • Kupcsik L, Stoddart MJ, Li Z, Benneker LM, Alini M (2010) Improving chondrogenesis: potential and limitations of SOX9 gene transfer and mechanical stimulation for cartilage tissue engineering. Tissue Eng Part A 16:1845–1855

    CAS  PubMed  Google Scholar 

  • Kuster MS, Wood GA, Stachowiak GW, Gachter A (1997) Joint load considerations in total knee replacement. The Bone & Joint Journal react-text: 15 79(1):109-13

    Google Scholar 

  • Lee DA, Bader DL (1997) Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res 15:181–188

    PubMed  Google Scholar 

  • Lee JS, Im GI (2010) Influence of chondrocytes on the chondrogenic differentiation of adipose stem cells. Tissue Eng Part A 16:3569–3577

    CAS  PubMed  Google Scholar 

  • Li Z, Kupcsik L, Yao SJ, Alini M, Stoddart MJ (2010) Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway. J Cell Mol Med 14:1338–1346

    CAS  PubMed  Google Scholar 

  • Lima EG, Bian L, Ng KW, Mauck RL, Byers BA, Tuan RS, Ateshian GA, Hung CT (2007) The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3. Osteoarthritis Cartilage 15:1025–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lo IKY, Sciore P, Chung M, Liang S, Boorman RB, Thornton GM, Rattner JB, Muldrew K (2009) Local anesthetics induce chondrocyte death in bovine articular cartilage disks in a dose- and duration-dependent manner. Arthroscopy 25:707–715

    Google Scholar 

  • Long R, Hall Matthew S, Wu M, Hui C-Y (2011) Effects of gel thickness on mnicroscopic indentation measurements of gel modulus. Biophys J 101:643–650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loparic M, Wirz D, Daniels AU, Raiteri R, VanLandingham MR, Guex G, Martin I, Aebi U, Stolz M (2010) Micro- and nanomechanical analysis of articular cartilage by indentation-type atomic force microscopy: validation with a gel-microfiber composite. Biophys J 98:2731–2740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo ZJ, Seedhom BB (2007) Light and low-frequency pulsatile hydrostatic pressure enhances extracellular matrix formation by bone marrow mesenchymal cells: an in-vitro study with special reference to cartilage repair. Proc Inst Mech Eng Part H 221:499–507

    CAS  Google Scholar 

  • Luo S, Shi Q, Zha Z, Yao P, Lin H, Liu N, Wu H, Jin H, Cai J (2012) Morphology and mechanics of chondroid cells from human adipose-derived stem cells detected by atomic force microscopy. Mol Cell Biochem 365:223–231

    CAS  PubMed  Google Scholar 

  • Mansour J (2003) Biomechanics of Cartilage. In: Oatis CA (ed) Kinesiology: the mechanics and pathomechanics of human movement. Lippincott Williams and Wilkins, Philadelphia, pp 66–79

  • Mauck RL, Soltz MA, Wang CCB, Wong DD, Chao PHG, Valhmu WB, Hung CT, Ateshian GA (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122:252–260

    CAS  PubMed  Google Scholar 

  • McGann LE, Stevenson M, Muldrew K, Schachar N (1988) Kinetics of osmotic water movement in chondrocytes isolated from articular cartilage and applications to cryopreservation. J Orthop Res 6:109–115

    CAS  PubMed  Google Scholar 

  • Meyer EG, Buckley CT, Steward AJ, Kelly DJ (2011) The effect of cyclic hydrostatic pressure on the functional development of cartilaginous tissues engineered using bone marrow derived mesenchymal stem cells. J Mech Behav Biomed Mater 4:1257–1265

    CAS  PubMed  Google Scholar 

  • Mitchell D, Hardingham T (1981) The effects of cycloheximide on the biosynthesis and secretion of proteoglycans by chondrocytes in culture. Biochem J 196:521–529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyanishi K, Trindade MCD, Lindsey DP, Beaupre GS, Carter DR, Goodman SB, Schurman DJ, Smith RL (2006) Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng 12:1419–1428

    CAS  PubMed  Google Scholar 

  • Mobasheri A, Carter SD, Martin-Vasallo P, Shakibaei M (2002) Integrins and stretch activated ion channels; putative components of functional cell surface mechanoreceptors in articular chondrocytes. Cell Biol Int 26:1–18

    CAS  PubMed  Google Scholar 

  • Morales TI, Roberts AB (1988) Transforming growth factor beta regulates the metabolism of proteoglycans in bovine cartilage organ cultures. J Biol Chem 263:12828–12831

    CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    CAS  PubMed  Google Scholar 

  • Murphy CM, Matsiko A, Haugh MG, Gleeson JP, O’Brien FJ (2012) Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds. J Mech Behav Biomed Mater 11:53–62

    CAS  PubMed  Google Scholar 

  • Nazempour A, Van Wie BJ (2016) Chondrocytes, mesenchymal stem sells, and their combination in articular cartilage regenerative medicine. Ann Biomed Eng 44:1325–1354

    CAS  PubMed  Google Scholar 

  • Nazempour A, Quisenberry CR, Van Wie BJ, Abu-Lail NI (2016) Nanomechanics of engineered articular cartilage: synergistic influences of transforming growth factor-β3 and oscillating pressure. J Nanosc Nanotechnol 16:3136–3145

    CAS  Google Scholar 

  • Nims RJ, Cigan AD, Albro MB, Hung CT, Ateshian GA (2014) Synthesis rates and binding kinetics of matrix products in engineered cartilage constructs using chondrocyte-seeded agarose gels. J Biomech 47:2165–2172

    PubMed  Google Scholar 

  • Normand V, Lootens DL, Amici E, Plucknett KP, Aymard P (2000) New insight into agarose gel mechanical properties. Biomacromolecules 1:730–738

    CAS  PubMed  Google Scholar 

  • O’Conor CJ, Case N, Guilak F (2013) Mechanical regulation of chondrogenesis. Stem Cell Res Ther 4:61

    PubMed  PubMed Central  Google Scholar 

  • Ogawa R, Mizuno S, Murphy GF, Orgill DP (2009) The effect of hydrostatic pressure on three-dimensional chondroinduction of human adipose-derived stem cells. Tissue Eng Part A 15:2937–2945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olee T, Grogan SP, Lotz MK, Colwell CW Jr, D’Lima DD, Snyder EY (2013) Repair of cartilage defects in arthritic tissue with differentiated human embryonic stem cells. Tissue Eng Part A 19:19

  • Park S, Duong C-T, Lee J-H, Lee S-S, Son K (2010) Effect of tip geometry of atomic force microscope on mechanical responses of bovine articular cartilage and agarose gel. Int J Precis Eng Manuf 11:129–136

    Google Scholar 

  • Porter B, Zauel R, Stockman H, Guldberg R, Fyhrie D (2005) 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. J Biomech 38:543–549

    PubMed  Google Scholar 

  • Quisenberry CR, Nazempour A, Van Wie BJ, Abu-Lail NI (2016) Evaluation of β1-integrin expression on chondrogenically differentiating human adipose-derived stem cells using atomic force microscopy. Biointerphases 11:021005

    PubMed  PubMed Central  Google Scholar 

  • Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 3:107–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro R, Olivares AL, Brans G, Wirz D, Longinotti C, Lacroix D, Martin I, Wendt D (2010) Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing. Biomaterials 31:8946–8952

    CAS  PubMed  Google Scholar 

  • Santos J, Rebêlo L, Araujo A, Barros E, de Sousa J (2012) Thickness-corrected model for nanoindentation of thin films with conical indenters. Soft Matter 8:4441–4448

    CAS  Google Scholar 

  • Schmid TM, Linsenmayer TF (1985) Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol 100:598–605

    CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols 3:1101–1108

    CAS  PubMed  Google Scholar 

  • Seidel JO, Pei M, Gray ML, Langer R, Freed LE, Vunjak-Novakovic G (2004) Long-term culture of tissue engineered cartilage in a perfused chamber with mechanical stimulation. Biorheology 41:445–458

    CAS  PubMed  Google Scholar 

  • Shintani N, Hunziker EB (2011) Differential effects of dexamethasone on the chondrogenesis of mesenchymal stromal cells: influence of microenvironment, tissue origin and growth factor. Eur Cell Mater 22:302–319

    CAS  PubMed  Google Scholar 

  • Sittinger M, Bujia J, Minuth WW, Hammer C, Burmester GR (1994) Engineering of cartilage tissue using bioresorbable polymer carriers in perfusion culture. Biomaterials 15:451–456

    CAS  PubMed  Google Scholar 

  • Smith RL, Donlon BS, Gupta MK, Mohtai M, Das P, Carter DR, Cooke J, Gibbons G, Hutchinson N, Schurman DJ (1995) Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J Orthop Res 13:824–831

    CAS  PubMed  Google Scholar 

  • Stolz M, Raiteri R, Daniels AU, VanLandingham MR, Baschong W, Aebi U (2004) Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys J 86:3269–3283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tallheden T, Karlsson C, Brunner A, Van Der Lee J, Hagg R, Tommasini R, Lindahl A (2004) Gene expression during redifferentiation of human articular chondrocytes. Osteoarthritis Cartilage 12:525–535

    PubMed  Google Scholar 

  • Tekari A, Luginbuehl R, Hofstetter W, Egli RJ (2015) Transforming growth factor beta signaling is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes. PLoS ONE 10:e0120857

    PubMed  PubMed Central  Google Scholar 

  • Tran SC, Cooley AJ, Elder SH (2011) Effect of a mechanical stimulation bioreactor on tissue engineered, scaffold-free cartilage. Biotechnol Bioeng 108:1421–1429

    CAS  PubMed  Google Scholar 

  • Wagner DR, Lindsey DP, Li KW, Tummala P, Chandran SE, Smith RL, Longaker MT, Carter DR, Beaupre GS (2008) Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium. Ann Biomed Eng 36:813–820

    PubMed  Google Scholar 

  • Waldman SD, Couto DC, Grynpas MD, Pilliar RM, Kandel RA (2006) A single application of cyclic loading can accelerate matrix deposition and enhance the properties of tissue-engineered cartilage. Osteoarthritis Cartilage 14:323–330

    CAS  PubMed  Google Scholar 

  • Wang H, Kandel RA (2004) Chondrocytes attach to hyaline or calcified cartilage and bone1. Osteoarthritis Cartilage 12:56–64

    PubMed  Google Scholar 

  • Wescoe KE, Schugar RC, Chu CR, Deasy BM (2008) The role of the biochemical and biophysical environment in chondrogenic stem cell differentiation assays and cartilage tissue engineering. Cell Biochem Biophys 52:85–102

    CAS  PubMed  Google Scholar 

  • Woessner JF Jr (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 93:440–447

    CAS  PubMed  Google Scholar 

  • Wong M, Siegrist M, Goodwin K (2003) Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone 33:685–693

    CAS  PubMed  Google Scholar 

  • Xu C, Oyajobi BO, Frazer A, Kozaci LD, Russell RG, Hollander AP (1996) Effects of growth factors and interleukin-1 alpha on proteoglycan and type II collagen turnover in bovine nasal and articular chondrocyte pellet cultures. Endocrinology 137:3557–3565

    CAS  PubMed  Google Scholar 

  • Xu X, Urban JP, Tirlapur U, Wu MH, Cui Z, Cui Z (2006) Influence of perfusion on metabolism and matrix production by bovine articular chondrocytes in hydrogel scaffolds. Biotechnol Bioeng 93:1103–1111

    CAS  PubMed  Google Scholar 

  • Zhang LM, Su PQ, Xu CX, Yang JL, Yu WH, Huang DS (2010) Chondrogenic differentiation of human mesenchymal stem cells: a comparison between micromass and pellet culture systems. Biotechnol Lett 32:1339–1346

    CAS  PubMed  Google Scholar 

  • Zhu Y, Dong Z, Wejinya UC, Jin S, Ye K (2011) Determination of mechanical properties of soft tissue scaffolds by atomic force microscopy nanoindentation. J Biomech 44:2356–2361

    PubMed  Google Scholar 

Download references

Acknowledgements

This project was accomplished with support from an NSF EAGER grant CBET-1212573, an NSF GRDS supplement CBET-1245188, the WSU NIH Protein Biotechnology Training Program grant NIH T32 GM008336-26, a NASA Space Grant, a WSU DRADS fellowship, a Harold P. Curtis Scholarship for Chrystal Quisenberry, as well as salary support for Prof. Van Wie from the USDA NIFA Hatch Project #WNP00807. The authors also acknowledge Potlatch Pack for the supply of bovine carpal joints, undergraduate students Ashley Davie and Tyler Cheung for their help in isolating bAChs and Gary Held and Miles Pepper from the WSU Voiland College of Engineering and Architecture Machine Shop for assistance in manufacture and assembly of the bioreactor system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard J. Van Wie.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazempour, A., Quisenberry, C.R., Abu-Lail, N.I. et al. Combined effects of oscillating hydrostatic pressure, perfusion and encapsulation in a novel bioreactor for enhancing extracellular matrix synthesis by bovine chondrocytes. Cell Tissue Res 370, 179–193 (2017). https://doi.org/10.1007/s00441-017-2651-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2651-7

Keywords

Navigation