Skip to main content
Log in

Effects of omega-3 on matrix metalloproteinase-9, myoblast transplantation and satellite cell activation in dystrophin-deficient muscle fibers

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In Duchenne muscular dystrophy (DMD), lack of dystrophin leads to progressive muscle degeneration, with DMD patients suffering from cardiorespiratory failure. Cell therapy is an alternative to life-long corticoid therapy. Satellite cells, the stem cells of skeletal muscles, do not completely compensate for the muscle damage in dystrophic muscles. Elevated levels of proinflammatory and profibrotic factors, such as metalloproteinase 9 (MMP-9), impair muscle regeneration, leading to extensive fibrosis and poor results with myoblast transplantation therapies. Omega-3 is an anti-inflammatory drug that protects against muscle degeneration in the mdx mouse model of DMD. In the present study, we test our hypothesis that omega-3 affects MMP-9 and thereby benefits muscle regeneration and myoblast transplantation in the mdx mouse. We observe that omega-3 reduces MMP-9 gene expression and improves myoblast engraftment, satellite cell activation, and muscle regeneration by mechanisms involving, at least in part, the regulation of macrophages, as shown here with the fluorescence-activated cell sorting technique. The present study demonstrates the benefits of omega-3 on satellite cell survival and muscle regeneration, further supporting its use in clinical trials and cell therapies in DMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alameddine HS (2012) Matrix metalloproteinases in skeletal muscles: friends or foes? Neurobiol Dis 48:508–518

    Article  CAS  PubMed  Google Scholar 

  • Apolinário LM, De Carvalho SC, Santo Neto H, Marques MJ (2015) Long-term therapy with omega-3 ameliorates myonecrosis and benefits skeletal muscle regeneration in mdx mice. Anat Rec (Hoboken) 298:589–1596

    Article  Google Scholar 

  • Bentzinger CF, von Maltzahn J, Rudnicki MA (2010) Extrinsic regulation of satellite cell specification. Stem Cell Res Ther 1:27–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Blake DJ, Weir A, Newey SE, Davies KE (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82:291–329

    Article  CAS  PubMed  Google Scholar 

  • Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810

    Article  CAS  PubMed  Google Scholar 

  • Brack A, Conboy IM, Conboy MJ, Shen J, Rando TA (2008) A temporal switch from Notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2:50–59

    Article  CAS  PubMed  Google Scholar 

  • Bulfield G, Siller WG, Wight PAL, Moore KJ (1984) X chromosome-liked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A 81:1189–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkin DJ, Kaufman SJ (1999) The alpha7 beta1 integrin in muscle development and disease. Cell Tissue Res 296:183–190

    Article  CAS  PubMed  Google Scholar 

  • Carvalho SC, Apolinário LM, Matheus SM, Santo Neto H, Marques MJ (2013) EPA protects against muscle damage in the mdx mouse model of Duchenne muscular dystrophy by promoting a shift from the M1 to M2 macrophage phenotype. J Neuroimmunol 264:41–47

    Article  PubMed  Google Scholar 

  • Church JE, Trieu J, Chee A, Naim T, Gehrig SM, Lamon S, Angelini C, Russell AP, Lynch GS (2014) Alterations in Notch signaling in skeletal muscles from mdx dko dystrophic mice and patients with Duchenne muscular dystrophy. Exp Physiol 99:675–687

    Article  CAS  PubMed  Google Scholar 

  • Collins CA, Zammit PS, Ruiz AP, Morgan JE, Partridge TA (2007) A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25:885–894

    Article  CAS  PubMed  Google Scholar 

  • Dahiya S, Bhatnagar S, Hindi SM, Jiang C, Paul PK, Kuang S, Kumar A (2011) Elevated levels of active matrix metalloproteinase-9 cause hypertrophy in skeletal muscle of normal and dystrophin-deficient mdx mice. Hum Mol Genet 20:4345–4359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darabi R, Santos FN, Perlingeiro RC (2008) The therapeutic potential of embryonic and adult stem cells for skeletal muscle regeneration. Stem Cell Rev 4:217–225

    Article  CAS  PubMed  Google Scholar 

  • Davies KE (1997) Challenges in Duchenne muscular dystrophy. Neuromuscul Disord 7:482–486

    Article  CAS  PubMed  Google Scholar 

  • Deng B, Wehling-Henricks M, Villalta SA, Wang Y, Tidball JG (2012) IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol 189:3669–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derosa G, Cicero AF, Fogari E, D’Angelo A, Bonaventura A, Romano D, Maffioli P (2012) Effects of n-3 PUFAs on postprandial variation of metalloproteinases, and inflammatory and insulin resistance parameters in dyslipidemic patients: evaluation with euglycemic clamp and oral fat load. J Clin Lipidol 6:553–564

    Article  PubMed  Google Scholar 

  • Dhanesh SB, Subashini C, James J (2016) Hes1: the maestro in neurogenesis. Cell Mol Life Sci 21:4019–4042

    Article  Google Scholar 

  • Emery AE (2002) The muscular dystrophies. Lancet 359:687–695

    Article  CAS  PubMed  Google Scholar 

  • Fairclough RJ, Wood MJ, Davies KE (2013) Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches. Nat Rev Genet 14:373–378

    Article  CAS  PubMed  Google Scholar 

  • Fogagnolo Mauricio A, Minatel E, Santo Neto H, Marques MJ (2013) Effects of fish oil containing eicosapentaenoic acid and docosahexaenoic acid on dystrophic mdx mice. Clin Nutr 32:636–642

    Article  CAS  PubMed  Google Scholar 

  • Hindi SM, Kumar A (2016) TRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis. J Clin Invest 126:151–168

    Article  PubMed  Google Scholar 

  • Hindi SM, Paul PK, Dahiya S, Mishra V, Bhatnagar S, Kuang S, Choi Y, Kumar A (2012) Reciprocal interaction between TRAF6 and notch signaling regulates adult myofiber regeneration upon injury. Mol Cell Biol 32:4833–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hindi SM, Shin J, Ogura Y, Li H, Kumar A (2013) Matrix metalloproteinase-9 inhibition improves proliferation and engraftment of myogenic cells in dystrophic muscle of mdx mice. PLoS One 8:e72121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F (2002) Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22:1172–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Wen Y, Kuroda K, Hannon K, Rudnicki MA, Kuang S (2014) Notch signaling deficiency underlies age dependent depletion of satellite cells in muscular dystrophy. Dis Model Mech 7:997–1004

    Article  PubMed  PubMed Central  Google Scholar 

  • Kavazos K, Nataatmadja M, Wales KM, Hartland E, Williams C, Russell FD (2015) Dietary supplementation with omega-3 polyunsaturated fatty acids modulate matrix metalloproteinase immunoreactivity in a mouse model of pre-abdominal aortic aneurysm. Heart Lung Circ 24:377–385

    Article  PubMed  Google Scholar 

  • Kitamoto T, Hanaoka K (2010) Notch3 null mutation in mice causes muscle hyperplasia by repetitive muscle regeneration. Stem Cells 28:2205–2216

    Article  CAS  PubMed  Google Scholar 

  • Kompauer I, Demmelmair H, Koletzko B, Bolte G, Linseisen J, Heinrich J (2005) Association of fatty acids in serum phospholipids with hay fever, specific and total immunoglobulin E. Br J Nutr 93:529–535

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bhatnagar S, Kumar A (2010) Matrix metalloproteinase inhibitor batimastat alleviates pathology and improves skeletal muscle function in dystrophin-deficient mdx mice. Am J Pathol 177:248–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroki F, Iida M, Matsumoto T, Aoyagi K, Kanamoto K, Fujishima M (1997) Serum n3 polyunsaturated fatty acids are depleted in Crohn’s disease. Dig Dis Sci 42:1137–1141

    Article  CAS  PubMed  Google Scholar 

  • Lai CQ, Corella D, Demissie S, Cupples LA, Adiconis X, Zhu Y, Parnell LD, Tucker KL, Ordovas JM (2006) Dietary intake of n-6 fatty acids modulates effect of apolipoprotein A5 gene on plasma fasting triglycerides, remnant lipoprotein concentrations, and lipoprotein particle size: the Framingham Heart Study. Circulation 113:2062–2070

    Article  CAS  PubMed  Google Scholar 

  • Le Grand F, Jones AE, Seale V, Scime A, Rudnicki MA (2009) Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 4:535–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung DG, Wagner KR (2013) Therapeutic advances in muscular dystrophy. Ann Neurol 74:404–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Mittal A, Makonchuk DY, Bhatnagar S, Kumar A (2009) Matrix metalloproteinase-9 inhibition ameliorates pathogenesis and improves skeletal muscle regeneration in muscular dystrophy. Hum Mol Genet 18:2584–2598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsell CE, Shawber CJ, Boulter J, Weinmaster G (1995) Jagged: a mammalian ligand that activates Notch1. Cell 80:909–917

    Article  CAS  PubMed  Google Scholar 

  • Machado RV, Mauricio AF, Taniguti APT, Ferretti R, Santo Neto H, Marques MJ (2011) Eicosapentaenoic acid decreases TNF-alpha and protects dystrophic muscles of mdx mice from degeneration. J Neuroimmunol 232:145–150

    Article  CAS  PubMed  Google Scholar 

  • Mauricio AF, Pereira JA, Neto HS, Marques MJ (2016) Effects of fish oil containing eicosapentaenoic acid and docosahexaenoic acid on dystrophic mdx mice hearts at later stages of dystrophy. Nutrition 32:855–862

    Article  Google Scholar 

  • McDonald CM, Henricson EK, Abresch RT, Han JJ, Escolar DM, Florence JM, Duong T, Arrieta A, Clemens PR, Hoffman EP, Cnaa A (2013) The Cooperative International Neuromuscular Research Group Duchenne Natural History Study. A longitudinal investigation in the era of glucocorticoid therapy: design of protocol and the methods used. Muscle Nerve 48:32–54

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendell JR, Kissel JT, Amato AA, King W, Signore L, Prior TW, Sahenk Z, Benson S, McAndrew PE, Rice R, Nagaraja H, Stephens R, Lantry L, Morris GE, Burghes AHM (1995) Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N Engl J Med 333:832e8

    Article  Google Scholar 

  • Mendell JR, Shilling C, Leslie ND, Flanigan KM, al-Dahhak R, Gastier-Foster J, Kneile K, Dunn DM, Duval B, Aoyagi A, Hamil C, Mahmoud M, Roush K, Bird L, Rankin C, Lilly H, Street N, Chandrasekar R, Weiss RB (2012) Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol 71:304–313

    Article  CAS  PubMed  Google Scholar 

  • Morgan JE, Zammit PS (2010) Direct effects of the pathogenic mutation on satellite cell function in muscular dystrophy. Exp Cell Res 316:3100–3108

    Article  CAS  PubMed  Google Scholar 

  • Mott JD, Werb Z (2014) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16:558–564

    Article  Google Scholar 

  • Mourikis P, Sambasivan R, Castel D, Rocheteau P, Bizzarro V, Tajbakhsh SA (2012) A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 30:243–252

    Article  CAS  PubMed  Google Scholar 

  • Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murton AJ, Constantin D, Greenhaff PL (2008) The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta 1782:730–743

    Article  CAS  PubMed  Google Scholar 

  • Nadarajah VD, van Putten M, Chaouch A, Garrood P, Straub V, Lochmuller H, Giniaar HB, Aartsma-Rus AM, van Ommen GJ, den Dunnen JT, Hoen PA (2011) Serum matrix metalloproteinase-9 (MMP-9) as a biomarker for monitoring disease progression in Duchenne muscular dystrophy (DMD). Neuromuscul Disord 21:569–578

    Article  CAS  PubMed  Google Scholar 

  • Negroni E, Vallese D, Vilquin J-T, Butler-Browne G, Mouly V, Trollet C (2011) Current advances in cell therapy strategies for muscular dystrophies. Expert Opin Biol Ther 11:157–176

    Article  PubMed  Google Scholar 

  • Oddy WH, de Klerk NH, Kendall GE, Mihrshahi S, Peat JK (2004) Ratio of omega-6 to omega-3 fatty acids and childhood asthma. J Asthma 41:319–326

    Article  CAS  PubMed  Google Scholar 

  • Ordovas JM (2006) Genetic interactions with diet influence the risk of cardiovascular disease. Am J Clin Nutr 83:443S–446S

    CAS  PubMed  Google Scholar 

  • Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 337:176–179

    Article  CAS  PubMed  Google Scholar 

  • Pastoret C, Sebille A (1995) Mdx mice show weakness and muscle deterioration with age. J Neurol Sci 129:97–105

    Article  CAS  PubMed  Google Scholar 

  • Paul PK, Gupta SK, Bhatnagar S, Panguluri SK, Darnay BG, Choi Y, Kumar A (2012) Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J Cell Biol 191:1395–1411

    Article  Google Scholar 

  • Péault B, Rudnicki M, Torrente Y, Cossu G, Tremblay JP, Partridge T, Gussoni E, Kunkel LM, Huard J (2007) Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 15:867–877

    Article  PubMed  Google Scholar 

  • Pescatori M, Broccolini A, Minetti C, Bertini E, Bruno C, D’amico A, Bernardini C, Mirabella M, Silvestri G, Giglio V, Modoni A, Pedemonte M, Tasca G, Galluzzi G, Mercuri E, Tonali PA, Ricci E (2007) Gene expression profiling in the early phases of DMD: a constant molecular signature characterizes DMD muscle from early postnatal life throughout disease progression. FASEB J 21:1210–1226

    Article  CAS  PubMed  Google Scholar 

  • Qu Z, Balkir L, van Deutekom JC, Robbins PD, Pruchnic R, Pruchnic R, Huard J (1998) Development of approaches to improve cell survival in myoblast transfer therapy. J Cell Biol 142:1257–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quattrocelli M, Cassano M, Crippa S, Perini I, Sampaolesi M (2010) Cell therapy strategies and improvements for muscular dystrophy. Cell Death Differ 17:1222–1229

    Article  CAS  PubMed  Google Scholar 

  • Ricotti V, Ridout DA, Scott E, Quinlivan R, Robb SA, Manzur AY, Muntoni F (2013) Long-term benefits and adverse effects of intermittent versus daily glucocorticoids in boys with Duchenne muscular dystrophy. J Neurol Neurosurg Psychiatry 84:698–705

    Article  PubMed  Google Scholar 

  • Rudnicki MA, Williams BO (2015) Wnt signaling in bone and muscle. Bone 80:60–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456:502–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sartori R, Schirwis E, Blaauw B, Bortolanza S, Zhao J, Enzo E, Stantzou A, Mouisel E, Toniolo L, Ferry A, Stricker S, Goldberg AL, Dupont S, Piccolo S, Amthor H, Sandri M (2013) BMP signalling controls muscle mass. Nat Genet 45:1309–1318

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre Y, Van Themsche C, Esteve PO (2003) Emerging features in the regulation of MMP-9 gene expression for the development of novel molecular targets and therapeutic strategies. Curr Drug Targets Inflamm Allergy 2:206–215

    Article  CAS  PubMed  Google Scholar 

  • Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 120:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tidball JG (2011) Mechanisms of muscle injury, repair, and regeneration. Compr Physiol 1:2029–2062

    PubMed  Google Scholar 

  • Usui S, Maejima Y, Pain J, Hong C, Cho J, Park JY, Zablocki D, Tian B, Glass DJ, Sadoshima J (2011) Endogenous muscle atrophy F-box mediates pressure overload-induced cardiac hypertrophy through regulation of nuclear factor-kappaB. Circ Res 109:161–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira NM, Elvers I, Alexander MS, Moreira YB, Eran A, Gomes JP, Marshall JL, Karlsson EK, Verjovski-Almeida S, Lindblad-Toh K, Kunkel LM, Zatz M (2015) Jagged 1 rescues the Duchenne muscular dystrophy phenotype. Cell 163:1204–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villalta SA, Nguyen HX, Deng B, Gotoh T, Tidball JG (2009) Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet 18:482–496

    Article  CAS  PubMed  Google Scholar 

  • Villalta SA, Rinaldi C, Deng B, Liu G, Fedor B, Tidball JB (2011) Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Hum Mol Genet 20:790–805

    Article  CAS  PubMed  Google Scholar 

  • von Maltzahn J, Renaud JM, Parise G, Rudnicki MA (2012) Wnt7a treatment ameliorates muscular dystrophy. Proc Natl Acad Sci U S A 109:20614–20619

    Article  Google Scholar 

  • Wang YX, Rudnicki MA (2012) Satellite cells, the engines of muscle repair. Nat Rev Mol Cell Biol 13:127–133

    CAS  Google Scholar 

  • Webster C, Blau HM (1990) Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy. Somat Cell Mol Genet 16:557–565

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Bi P, Liu W, Asakura A, Keller C, Kuang S (2012) Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Mol Cell Biol 32:2300–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu G, Bjorksten B (1998) Serum levels of phospholipid fatty acids in mothers and their babies in relation to allergic disease. Eur J Pediatr 157:298–303

    Article  CAS  PubMed  Google Scholar 

  • Zamaria N (2004) Alteration of polyunsaturated fatty acid status and metabolism in health and disease. Reprod Nutr Dev 44:273–282

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Chen LH (2005) Eicosapentaenoic acid prevents lipopolysaccharide-stimulated DNA binding of activator protein-1 and c-Jun N-terminal kinase activity. J Nutr Biochem 16:78–84

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all colleagues from Dr. Kumar’s laboratory for helpful discussions and suggestions. This work was supported by the Coordenadoria de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES, grant 003839/2014-01), Fundação de Amparo à Pesquisa do Estado de São Paulo and Conselho Nacional de Desenvolvimento Científico e Tecnológico (grants 14/15492-3, 2014/04782-6, 303,320/2013-3) and the National Institute of Health, Universtiy of Louisville, Ky., USA (grants: AR059810 and AR068313). M.J.M. was the recipient of a fellowship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant 302831/2013-4).

Author information

Authors and Affiliations

Authors

Contributions

S.C.C and M.J.M. conceived and designed the study. S.C.C. conducted the study. S.H. helped with some experiments and analyzed the FACS data. M.J.M. and A.K. obtained funding for this project. All authors drafted and/or edited the manuscript and approved the final version of the manuscript.

Corresponding author

Correspondence to Maria Julia Marques.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Electronic supplementary material

Table S1

Sequence of primers used for quantitative real-time polymerase chain reaction assay. (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho, S.C., Hindi, S.M., Kumar, A. et al. Effects of omega-3 on matrix metalloproteinase-9, myoblast transplantation and satellite cell activation in dystrophin-deficient muscle fibers. Cell Tissue Res 369, 591–602 (2017). https://doi.org/10.1007/s00441-017-2640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2640-x

Keywords

Navigation