Cell and Tissue Research

, Volume 369, Issue 3, pp 611–624 | Cite as

PPARγ activation regulates lipid droplet formation and lactate production in rat Sertoli cells

  • A. Gorga
  • G. M. Rindone
  • M. Regueira
  • E. H. Pellizzari
  • M. C. Camberos
  • S. B. Cigorraga
  • M. F. Riera
  • M. N. Galardo
  • S. B. MeroniEmail author
Regular Article


Sertoli cells provide the structural and nutritional support for germ cell development; they actively metabolize glucose and convert it to lactate, which is an important source of energy for germ cells. Furthermore, Sertoli cells can oxidize fatty acids, a metabolic process that is assumed to fulfill their own energy requirements. Fatty acids are stored as triacylglycerides within lipid droplets. The regulation of fatty acid storage in conjunction with the regulation of lactate production may thus be relevant to seminiferous tubule physiology. Our aim is to evaluate a possible means of regulation by the PPARγ activation of lipid droplet formation and lactate production. Sertoli cell cultures obtained from 20-day-old rats were incubated with Rosiglitazone (10 μM), a PPARγ activator, for various periods of time (6, 12, 24 and 48 h). Increased triacylglycerides levels and lipid droplet content were observed, accompanied by a rise in the expression of genes for proteins involved in fatty acid storage, such as the fatty acid transporter Cd36, glycerol-3-phosphate-acyltransferases 1 and 3, diacylglycerol acyltransferase 1 and perilipins 1, 2 and 3, all proteins that participate in lipid droplet formation and stabilization. However, PPARγ activation increased lactate production, accompanied by an augmentation in glucose uptake and Glut2 expression. These results taken together suggest that PPARγ activation in Sertoli cells participates in the regulation of lipid storage and lactate production thereby ensuring simultaneously the energetic metabolism for the Sertoli and germ cells.


PPARγ Sertoli cells Lipid droplets Lactate Perilipins 



The technical help of Mercedes Astarloa is gratefully acknowledged. We also thank Celia Nieto for revising our English usage. This work was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT) (PICT 2014/945) and the Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET) (PIP 2011/187). M.F. Riera, M.N. Galardo and S.B. Meroni are established investigators of CONICET. A. Gorga is a recipient of an ANPCYT fellowship. G.M. Rindone and M. Regueira are recipients of CONICET fellowships.


  1. Abumrad NA, el-Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA (1993) Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem 268:17665–17668PubMedGoogle Scholar
  2. Ahmadian M, Wang Y, Sul HS (2010) Lipolysis in adipocytes. Int J Biochem Cell Biol 42:555–559CrossRefPubMedGoogle Scholar
  3. Arimura N, Horiba T, Imagawa M, Shimizu M, Sato R (2004) The peroxisome proliferator-activated receptor gamma regulates expression of the perilipin gene in adipocytes. J Biol Chem 279:10070–10076CrossRefPubMedGoogle Scholar
  4. Bickel PE, Tansey JT, Welte MA (2009) PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta 1791:419–440CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bonen A, Campbell SE, Benton CR, Chabowski A, Coort SL, Han XX, Koonen DP, Glatz JF, Luiken JJ (2004) Regulation of fatty acid transport by fatty acid translocase/CD36. Proc Nutr Soc 63:245–249CrossRefPubMedGoogle Scholar
  6. Bosma M (2016) Lipid droplet dynamics in skeletal muscle. Exp Cell Res 340:180–186CrossRefPubMedGoogle Scholar
  7. Bosma M, Dapito DH, Drosatos-Tampakaki Z, Huiping-Son N, Huang LS, Kersten S, Drosatos K, Goldberg IJ (2014) Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity. Biochim Biophys Acta 1841:1648–1655CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boussouar F, Benahmed M (2004) Lactate and energy metabolism in male germ cells. Trends Endocrinol Metab 15:345–350CrossRefPubMedGoogle Scholar
  9. Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, −beta, and -gamma in the adult rat. Endocrinology 137:354–366CrossRefPubMedGoogle Scholar
  10. Brasaemle DL (2007) Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48:2547–2559CrossRefPubMedGoogle Scholar
  11. Cao J, Li JL, Li D, Tobin JF, Gimeno RE (2006) Molecular identification of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase, a key enzyme in de novo triacylglycerol synthesis. Proc Natl Acad Sci U S A 103:19695–19700CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK, Farese RV Jr (1998) Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci U S A 95:13018–13023CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cha BS, Ciaraldi TP, Carter L, Nikoulina SE, Mudaliar S, Mukherjee R, Paterniti JR Jr, Henry RR (2001) Peroxisome proliferator-activated receptor (PPAR) gamma and retinoid X receptor (RXR) agonists have complementary effects on glucose and lipid metabolism in human skeletal muscle. Diabetologia 44:444–452CrossRefPubMedGoogle Scholar
  14. Choi SY, Collins CC, Gout PW, Wang Y (2013) Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol 230:350–355CrossRefPubMedPubMedCentralGoogle Scholar
  15. Galardo MN, Riera MF, Pellizzari EH, Chemes HE, Venara MC, Cigorraga SB, Meroni SB (2008) Regulation of expression of Sertoli cell glucose transporters 1 and 3 by FSH, IL1 beta, and bFGF at two different time-points in pubertal development. Cell Tissue Res 334:295–304CrossRefPubMedGoogle Scholar
  16. Galardo MN, Riera MF, Pellizzari EH, Sobarzo C, Scarcelli R, Denduchis B, Lustig L, Cigorraga SB, Meroni SB (2010) Adenosine regulates Sertoli cell function by activating AMPK. Mol Cell Endocrinol 330:49–58CrossRefPubMedGoogle Scholar
  17. Galardo MN, Regueira M, Riera MF, Pellizzari EH, Cigorraga SB, Meroni SB (2014) Lactate regulates rat male germ cell function through reactive oxygen species.PLoS One 9:e88024CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gardner DK (2015) Lactate production by the mammalian blastocyst: manipulating the microenvironment for uterine implantation and invasion? BioEssays 37:364–371CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gillot I, Jehl-Pietri C, Gounon P, Luquet S, Rassoulzadegan M, Grimaldi P, Vidal F (2005) Germ cells and fatty acids induce translocation of CD36 scavenger receptor to the plasma membrane of Sertoli cells. J Cell Sci 118:3027–3035CrossRefPubMedGoogle Scholar
  20. Green S, Wahli W (1994) Peroxisome proliferator-activated receptors: finding the orphan a home. Mol Cell Endocrinol 100:149–153CrossRefPubMedGoogle Scholar
  21. Hammond LE, Neschen S, Romanelli AJ, Cline GW, Ilkayeva OR, Shulman GI, Muoio DM, Coleman RA (2005) Mitochondrial glycerol-3-phosphate acyltransferase-1 is essential in liver for the metabolism of excess acyl-CoAs. J Biol Chem 280:25629–25636CrossRefPubMedGoogle Scholar
  22. Higa M, Zhou YT, Ravazzola M, Baetens D, Orci L, Unger RH (1999) Troglitazone prevents mitochondrial alterations, beta cell destruction, and diabetes in obese prediabetic rats. Proc Natl Acad Sci U S A 96:11513–11518CrossRefPubMedPubMedCentralGoogle Scholar
  23. Igal RA, Wang S, Gonzalez-Baro M, Coleman RA (2001) Mitochondrial glycerol phosphate acyltransferase directs the incorporation of exogenous fatty acids into triacylglycerol. J Biol Chem 276:42205–42212CrossRefPubMedGoogle Scholar
  24. Im SS, Kim JW, Kim TH, Song XL, Kim SY, Kim HI, Ahn YH (2005) Identification and characterization of peroxisome proliferator response element in the mouse GLUT2 promoter. Exp Mol Med 37:101–110CrossRefPubMedGoogle Scholar
  25. Jump DB, Botolin D, Wang Y, Xu J, Christian B, Demeure O (2005) Fatty acid regulation of hepatic gene transcription. J Nutr 135:2503–2506PubMedGoogle Scholar
  26. Jutte NH, Eikvar L, Levy FO, Hansson V (1985) Metabolism of palmitate in cultured rat Sertoli cells. J Reprod Fertil 73:497–503CrossRefPubMedGoogle Scholar
  27. Kerr JB, De Kretser DM (1975) Cyclic variations in Sertoli cell lipid content throughout the spermatogenic cycle in the rat. J Reprod Fertil 43:1–8CrossRefPubMedGoogle Scholar
  28. Kerr JB, Mayberry RA, Irby DC (1984) Morphometric studies on lipid inclusions in Sertoli cells during the spermatogenic cycle in the rat. Cell Tissue Res 236:699–709CrossRefPubMedGoogle Scholar
  29. Kim HI, Ahn YH (2004) Role of peroxisome proliferator-activated receptor-gamma in the glucose-sensing apparatus of liver and beta-cells. Diabetes 53:S60–S65CrossRefPubMedGoogle Scholar
  30. Kim HI, Kim JW, Kim SH, Cha JY, Kim KS, Ahn YH (2000) Identification and functional characterization of the peroxisomal proliferator response element in rat GLUT2 promoter. Diabetes 49:1517–1524CrossRefPubMedGoogle Scholar
  31. Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C (2010) Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 51:468–471CrossRefPubMedPubMedCentralGoogle Scholar
  32. Labarca C, Paigen K (1980) A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102:344–352CrossRefPubMedGoogle Scholar
  33. Lewin TM, Wang S, Nagle CA, Van Horn CG, Coleman RA (2005) Mitochondrial glycerol-3-phosphate acyltransferase-1 directs the metabolic fate of exogenous fatty acids in hepatocytes. Am J Physiol Endocrinol Metab 288:E835–E844CrossRefPubMedGoogle Scholar
  34. Linden D, William-Olsson L, Rhedin M, Asztely AK, Clapham JC, Schreyer S (2004) Overexpression of mitochondrial GPAT in rat hepatocytes leads to decreased fatty acid oxidation and increased glycerolipid biosynthesis. J Lipid Res 45:1279–1288CrossRefPubMedGoogle Scholar
  35. Liu Q, Siloto RM, Lehner R, Stone SJ, Weselake RJ (2012) Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology. Prog Lipid Res 51:350–377CrossRefPubMedGoogle Scholar
  36. Meneses MJ, Bernardino RL, Sá R, Silva J, Barros A, Sousa M, Silva BM, Oliveira PF, Alves MG (2016)Pioglitazone increases the glycolytic efficiency of human Sertoli cells with possible implications for spermatogenesis.Int J Biochem Cell Biol 79:52–60CrossRefPubMedGoogle Scholar
  37. Meroni SB, Riera MF, Pellizzari EH, Cigorraga SB (2002) Regulation of rat Sertoli cell function by FSH: possible role of phosphatidylinositol 3-kinase/protein kinase B pathway. J Endocrinol 174:195–204CrossRefPubMedGoogle Scholar
  38. Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O’Rahilly S, Palmer CN, Plutzky J, Reddy JK, Spiegelman BM, Staels B, Wahli W (2006) International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 58:726–741CrossRefPubMedGoogle Scholar
  39. Nehar D, Mauduit C, Boussouar F, Benahmed M (1997) Tumor necrosis factor-alpha-stimulated lactate production is linked to lactate dehydrogenase a expression and activity increase in porcine cultured Sertoli cells. Endocrinology 138:1964–1971CrossRefPubMedGoogle Scholar
  40. Nehar D, Mauduit C, Boussouar F, Benahmed M (1998) Interleukin 1alpha stimulates lactate dehydrogenase a expression and lactate production in cultured porcine Sertoli cells. Biol Reprod 59:1425–1432CrossRefPubMedGoogle Scholar
  41. Okumura T (2011) Role of lipid droplet proteins in liver steatosis. J Physiol Biochem 67:629–636CrossRefPubMedGoogle Scholar
  42. Oliveira PF, Alves MG, Rato L, Laurentino S, Silva J, Sa R, Barros A, Sousa M, Carvalho RA, Cavaco JE, Socorro S (2012) Effect of insulin deprivation on metabolism and metabolism-associated gene transcript levels of in vitro cultured human Sertoli cells. Biochim Biophys Acta 1820:84–89CrossRefPubMedGoogle Scholar
  43. Oresti GM, Garcia-Lopez J, Aveldano MI, Del Mazo J (2013) Cell-type-specific regulation of genes involved in testicular lipid metabolism: fatty acid-binding proteins, diacylglycerol acyltransferases, and perilipin 2. Reproduction 146:471–480CrossRefPubMedGoogle Scholar
  44. Parvinen M (1982) Regulation of the seminiferous epithelium. Endocr Rev 3:404–417CrossRefPubMedGoogle Scholar
  45. Picard F, Auwerx J (2002) PPAR(gamma) and glucose homeostasis. Annu Rev Nutr 22:167–197CrossRefPubMedGoogle Scholar
  46. Ranganathan G, Unal R, Pokrovskaya I, Yao-Borengasser A, Phanavanh B, Lecka-Czernik B, Rasouli N, Kern PA (2006) The lipogenic enzymes DGAT1, FAS, and LPL in adipose tissue: effects of obesity, insulin resistance, and TZD treatment. J Lipid Res 47:2444–2450CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rato L, Alves MG, Socorro S, Carvalho RA, Cavaco JE, Oliveira PF (2012) Metabolic modulation induced by oestradiol and DHT in immature rat Sertoli cells cultured in vitro. Biosci Rep 32:61–69CrossRefPubMedGoogle Scholar
  48. Regueira M, Riera MF, Galardo MN, Pellizzari EH, Cigorraga SB, Meroni SB (2014) Activation of PPAR alpha and PPAR beta/delta regulates Sertoli cell metabolism. Mol Cell Endocrinol 382:271–281CrossRefPubMedGoogle Scholar
  49. Regueira M, Artagaveytia SL, Galardo MN, Pellizzari EH, Cigorraga SB, Meroni SB, Riera MF (2015) Novel molecular mechanisms involved in hormonal regulation of lactate production in Sertoli cells. Reproduction 150:311–321CrossRefPubMedGoogle Scholar
  50. Riera MF, Meroni SB, Gomez GE, Schteingart HF, Pellizzari EH, Cigorraga SB (2001) Regulation of lactate production by FSH, iL1beta, and TNFalpha in rat Sertoli cells. Gen Comp Endocrinol 122:88–97CrossRefPubMedGoogle Scholar
  51. Riera MF, Meroni SB, Schteingart HF, Pellizzari EH, Cigorraga SB (2002) Regulation of lactate production and glucose transport as well as of glucose transporter 1 and lactate dehydrogenase a mRNA levels by basic fibroblast growth factor in rat Sertoli cells. J Endocrinol 173:335–343CrossRefPubMedGoogle Scholar
  52. Riera MF, Galardo MN, Pellizzari EH, Meroni SB, Cigorraga SB (2007) Participation of phosphatidyl inositol 3-kinase/protein kinase B and ERK1/2 pathways in interleukin-1beta stimulation of lactate production in Sertoli cells. Reproduction 133:763–773CrossRefPubMedGoogle Scholar
  53. Rieusset J, Auwerx J, Vidal H (1999) Regulation of gene expression by activation of the peroxisome proliferator-activated receptor gamma with Rosiglitazone (BRL 49653) in human adipocytes. Biochem Biophys Res Commun 265:265–271CrossRefPubMedGoogle Scholar
  54. Robinson R, Fritz IB (1981) Metabolism of glucose by Sertoli cells in culture. Biol Reprod 24:1032–1041CrossRefPubMedGoogle Scholar
  55. Sanderson LM, Degenhardt T, Koppen A, Kalkhoven E, Desvergne B, Muller M, Kersten S (2009) Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) but not PPARalpha serves as a plasma free fatty acid sensor in liver. Mol Cell Biol 29:6257–6267CrossRefPubMedPubMedCentralGoogle Scholar
  56. Shi Y, Cheng D (2009) Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism. Am J Physiol Endocrinol Metab 297:E10–E18CrossRefPubMedPubMedCentralGoogle Scholar
  57. Siersbaek R, Nielsen R, Mandrup S (2010) PPARgamma in adipocyte differentiation and metabolism—novel insights from genome-wide studies. FEBS Lett 584:3242–3249CrossRefPubMedGoogle Scholar
  58. Smith U, Gogg S, Johansson A, Olausson T, Rotter V, Svalstedt B (2001) Thiazolidinediones (PPARgamma agonists) but not PPARalpha agonists increase IRS-2 gene expression in 3T3-L1 and human adipocytes. FASEB J 15:215–220CrossRefPubMedGoogle Scholar
  59. Sztalryd C, Kimmel AR (2014) Perilipins: lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection. Biochimie 96:96–101CrossRefPubMedGoogle Scholar
  60. Takeuchi K, Reue K (2009) Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab 296:E1195–E1209CrossRefPubMedPubMedCentralGoogle Scholar
  61. Thomas K, Sung DY, Chen X, Thompson W, Chen YE, McCarrey J, Walker W, Griswold M (2011) Developmental patterns of PPAR and RXR gene expression during spermatogenesis. Front Biosci (Elite Ed) 3:1209–1220CrossRefGoogle Scholar
  62. Ueno H, Mori H (1990) Morphometrical analysis of Sertoli cell ultrastructure during the seminiferous epithelial cycle in rats. Biol Reprod 43:769–776CrossRefPubMedGoogle Scholar
  63. Walther TC, Farese RV Jr (2012) Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81:687–714CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wang H, Wang H, Xiong W, Chen Y, Ma Q, Ma J, Ge Y, Han D (2006) Evaluation on the phagocytosis of apoptotic spermatogenic cells by Sertoli cells in vitro through detecting lipid droplet formation by oil red O staining. Reproduction 132:485–492CrossRefPubMedGoogle Scholar
  65. Wendel AA, Lewin TM, Coleman RA (2009) Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. Biochim Biophys Acta 1791:501–506CrossRefPubMedGoogle Scholar
  66. Wu Z, Xie Y, Morrison RF, Bucher NL, Farmer SR (1998) PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes. J Clin Invest 101:22–32CrossRefPubMedPubMedCentralGoogle Scholar
  67. Xiong W, Wang H, Wu H, Chen Y, Han D (2009) Apoptotic spermatogenic cells can be energy sources for Sertoli cells. Reproduction 137:469–479CrossRefPubMedGoogle Scholar
  68. Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, Sternbach DD, Lehmann JM, Wisely GB, Willson TM, Kliewer SA, Milburn MV (1999) Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 3:397–403CrossRefPubMedGoogle Scholar
  69. Zhang B, Szalkowski D, Diaz E, Hayes N, Smith R, Berger J (1994) Potentiation of insulin stimulation of phosphatidylinositol 3-kinase by thiazolidinedione-derived antidiabetic agents in Chinese hamster ovary cells expressing human insulin receptors and L6 myotubes. J Biol Chem 269:25735–25741PubMedGoogle Scholar
  70. Zhao S, Zhu W, Xue S, Han D (2014) Testicular defense systems: immune privilege and innate immunity. Cell Mol Immunol 11:428–437CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • A. Gorga
    • 1
  • G. M. Rindone
    • 1
  • M. Regueira
    • 1
  • E. H. Pellizzari
    • 1
  • M. C. Camberos
    • 1
  • S. B. Cigorraga
    • 1
  • M. F. Riera
    • 1
  • M. N. Galardo
    • 1
  • S. B. Meroni
    • 1
    Email author
  1. 1.Centro de Investigaciones Endocrinológicas, “Dr César Bergadá”, CONICET-FEI-División de EndocrinologíaHospital de Niños Ricardo GutiérrezBuenos AiresArgentina

Personalised recommendations