Cell and Tissue Research

, Volume 368, Issue 3, pp 615–627 | Cite as

Comprehensive functional analysis of Rab GTPases in Drosophila nephrocytes

  • Yulong Fu
  • Jun-yi Zhu
  • Fujian Zhang
  • Adam Richman
  • Zhanzheng Zhao
  • Zhe HanEmail author
Regular Article


The Drosophila nephrocyte is a critical component of the fly renal system and bears structural and functional homology to podocytes and proximal tubule cells of the mammalian kidney. Investigations of nephrocyte cell biological processes are fundamental to understanding the insect renal system. Nephrocytes are highly active in endocytosis and vesicle trafficking. Rab GTPases regulate endocytosis and trafficking but specific functions of nephrocyte Rabs remain undefined. We analyzed Rab GTPase expression and function in Drosophila nephrocytes and found that 11 out of 27 Drosophila Rabs were required for normal activity. Rabs 1, 5, 7, 11 and 35 were most important. Gene silencing of the nephrocyte-specific Rab5 eliminated all intracellular vesicles and the specialized plasma membrane structures essential for nephrocyte function. Rab7 silencing dramatically increased clear vacuoles and reduced lysosomes. Rab11 silencing increased lysosomes and reduced clear vacuoles. Our results suggest that Rab5 mediates endocytosis that is essential for the maintenance of functionally critical nephrocyte plasma membrane structures and that Rabs 7 and 11 mediate alternative downstream vesicle trafficking pathways leading to protein degradation and membrane recycling, respectively. Elucidating molecular pathways underlying nephrocyte function has the potential to yield important insights into human kidney cell physiology and mechanisms of cell injury that lead to disease. The Drosophila nephrocyte is emerging as a useful in vivo model system for molecular target identification and initial testing of therapeutic approaches in humans.


Drosophila Nephrocyte Rab Vesicle trafficking Endosome 



We thank the Bloomington Drosophila Stock Center and the VDRC for Drosophila stocks. We acknowledge the Microscopy and Image Analysis Laboratory at the University of Michigan for their technical support with transmission electron microscopy. We are especially grateful to Dotty Sorenson and Sasha Meshinchi for their assistance in electron microscopy. Z.H. was supported by grant R01-DK098410 from the NIH.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

441_2017_2575_MOESM1_ESM.pdf (56 kb)
ESM 1 (PDF 55 kb)


  1. Akilesh S, Huber TB, Wu H, Wang G, Hartleben B, Kopp JB, Miner JH, Roopenian DC, Unanue ER, Shaw AS (2008) Podocytes use FcRn to clear IgG from the glomerular basement membrane. Proc Natl Acad Sci U S A 105:967–972CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bechtel W, Helmstadter M, Balica J, Hartleben B, Kiefer B, Hrnjic F, Schell C, Kretz O, Liu S, Geist F, Kerjaschki D, Walz G, Huber TB (2013) Vps34 deficiency reveals the importance of endocytosis for podocyte homeostasis. J Am Soc Nephrol 24:727–743CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cagan RL (2011) The Drosophila nephrocyte. Curr Opin Nephrol Hypertens 20:409–415CrossRefPubMedGoogle Scholar
  4. Carson JM, Okamura K, Wakashin H, McFann K, Dobrinskikh E, Kopp JB, Blaine J (2014) Podocytes degrade endocytosed albumin primarily in lysosomes. PLoS One 9:e99771CrossRefPubMedPubMedCentralGoogle Scholar
  5. Christensen EI, Birn H (2002) Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3:256–266CrossRefPubMedGoogle Scholar
  6. Christensen EI, Verroust PJ, Nielsen R (2009) Receptor-mediated endocytosis in renal proximal tubule. Pflugers Arch 458:1039–1048CrossRefPubMedGoogle Scholar
  7. Dobrinskikh E, Okamura K, Kopp JB, Doctor RB, Blaine J (2014) Human podocytes perform polarized, caveolae-dependent albumin endocytosis. Am J Physiol Renal Physiol 306:F941–F951CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dunst S, Kazimiers T, von Zadow F, Jambor H, Sagner A, Brankatschk B, Mahmoud A, Spannl S, Tomancak P, Eaton S, Brankatschk M (2015) Endogenously tagged Rab proteins: a resource to study membrane trafficking in Drosophila. Dev Cell 33:351–365CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gorvel JP, Chavrier P, Zerial M, Gruenberg J (1991) Rab5 controls early endosome fusion in vitro. Cell 64:915–925CrossRefPubMedGoogle Scholar
  10. Gorvin CM, Wilmer MJ, Piret SE, Harding B, van den Heuvel LP, Wrong O, Jat PS, Lippiat JD, Levtchenko EN, Thakker RV (2013) Receptor-mediated endocytosis and endosomal acidification is impaired in proximal tubule epithelial cells of Dent disease patients. Proc Natl Acad Sci U S A 110:7014–7019CrossRefPubMedPubMedCentralGoogle Scholar
  11. Grahammer F, Schell C, Huber TB (2013) The podocyte slit diaphragm—from a thin grey line to a complex signalling hub. Nat Rev Nephrol 9:587–598CrossRefPubMedGoogle Scholar
  12. Han Z, Yi P, Li X, Olson EN (2006) Hand, an evolutionarily conserved bHLH transcription factor required for Drosophila cardiogenesis and hematopoiesis. Development 133:1175–1182CrossRefPubMedGoogle Scholar
  13. Inoue K, Ishibe S (2015) Podocyte endocytosis in the regulation of the glomerular filtration barrier. Am J Physiol Renal Physiol 309:F398–F405CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ivy JR, Drechsler M, Catterson JH, Bodmer R, Ocorr K, Paululat A, Hartley PS (2015) Klf15 is critical for the development and differentiation of Drosophila nephrocytes. PLoS One 10:e0134620CrossRefPubMedPubMedCentralGoogle Scholar
  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  16. McLauchlan H, Newell J, Morrice N, Osborne A, West M, Smythe E (1998) A novel role for Rab5-GDI in ligand sequestration into clathrin-coated pits. Curr Biol 8:34–45CrossRefPubMedGoogle Scholar
  17. Na J, Cagan R (2013) The Drosophila nephrocyte: back on stage. J Am Soc Nephrol 24:161–163CrossRefPubMedGoogle Scholar
  18. Nebenfuhr A (2002) Vesicle traffic in the endomembrane system: a tale of COPs, Rabs and SNAREs. Curr Opin Plant Biol 5:507–512CrossRefPubMedGoogle Scholar
  19. Nielsen R, Christensen EI (2010) Proteinuria and events beyond the slit. Pediatr Nephrol 25:813–822CrossRefPubMedGoogle Scholar
  20. Nielsen R, Courtoy PJ, Jacobsen C, Dom G, Lima WR, Jadot M, Willnow TE, Devuyst O, Christensen EI (2007) Endocytosis provides a major alternative pathway for lysosomal biogenesis in kidney proximal tubular cells. Proc Natl Acad Sci U S A 104:5407–5412CrossRefPubMedPubMedCentralGoogle Scholar
  21. Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307CrossRefPubMedGoogle Scholar
  22. Pereira-Leal JB, Seabra MC (2001) Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313:889–901CrossRefPubMedGoogle Scholar
  23. Pfeffer SR (2001) Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol 11:487–491CrossRefPubMedGoogle Scholar
  24. Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A (2007) Rab GTPases at a glance. J Cell Sci 120:3905–3910CrossRefPubMedGoogle Scholar
  25. Scott RP, Quaggin SE (2015) Review series: the cell biology of renal filtration. J Cell Biol 209:199–210CrossRefPubMedPubMedCentralGoogle Scholar
  26. Simons M, Huber TB (2009) Flying podocytes. Kidney Int 75:455–457CrossRefPubMedGoogle Scholar
  27. Steed E, Balda MS, Matter K (2010) Dynamics and functions of tight junctions. Trends Cell Biol 20:142–149CrossRefPubMedGoogle Scholar
  28. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525CrossRefPubMedGoogle Scholar
  29. Swiatecka-Urban A (2013) Membrane trafficking in podocyte health and disease. Pediatr Nephrol 28:1723–1737CrossRefPubMedGoogle Scholar
  30. Tang VW, Brieher WM (2012) Alpha-actinin-4/FSGS1 is required for Arp2/3-dependent actin assembly at the adherens junction. J Cell Biol 196:115–130CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wang T, Ming Z, Xiaochun W, Hong W (2011) Rab7: role of its protein interaction cascades in endo-lysosomal traffic. Cell Signal 23:516–521CrossRefPubMedGoogle Scholar
  32. Weavers H, Prieto-Sanchez S, Grawe F, Garcia-Lopez A, Artero R, Wilsch-Brauninger M, Ruiz-Gomez M, Skaer H, Denholm B (2009) The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature 457:322–326CrossRefPubMedGoogle Scholar
  33. Yi P, Han Z, Li X, Olson EN (2006) The mevalonate pathway controls heart formation in Drosophila by isoprenylation of Ggamma1. Science 313:1301–1303CrossRefPubMedGoogle Scholar
  34. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117CrossRefPubMedGoogle Scholar
  35. Zhang F, Zhao Y, Chao Y, Muir K, Han Z (2013a) Cubilin and amnionless mediate protein reabsorption in Drosophila nephrocytes. J Am Soc Nephrol 24:209–216CrossRefPubMedGoogle Scholar
  36. Zhang F, Zhao Y, Han Z (2013b) An in vivo functional analysis system for renal gene discovery in Drosophila pericardial nephrocytes. J Am Soc Nephrol 24:191–197CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zhuang S, Shao H, Guo F, Trimble R, Pearce E, Abmayr SM (2009) Sns and kirre, the Drosophila orthologs of nephrin and Neph1, direct adhesion, fusion and formation of a slit diaphragm-like structure in insect nephrocytes. Development 136:2335–2344CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yulong Fu
    • 1
  • Jun-yi Zhu
    • 1
  • Fujian Zhang
    • 2
  • Adam Richman
    • 1
  • Zhanzheng Zhao
    • 3
  • Zhe Han
    • 1
    Email author
  1. 1.Center for Cancer and Immunology ResearchChildren’s Research Institute, Children’s National Medical CenterWashingtonUSA
  2. 2.Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouPeople’s Republic of China
  3. 3.Department of NephrologyFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations