Cell and Tissue Research

, Volume 367, Issue 3, pp 627–642 | Cite as

Pulmonary innate inflammatory responses to agricultural occupational contaminants

  • Ram S. Sethi
  • David Schneberger
  • Chandrashekhar Charavaryamath
  • Baljit SinghEmail author


Agricultural workers are exposed to many contaminants and suffer from respiratory and other symptoms. Dusts, gases, microbial products and pesticide residues from farms have been linked to effects on the health of agricultural workers. Growing sets of data from in vitro and in vivo models demonstrate the role of the innate immune system, especially Toll-like receptor 4 (TLR4) and TLR9, in lung inflammation induced following exposure to contaminants in agricultural environments. Interestingly, inflammation and lung function changes appear to be discordant indicating the complexity of inflammatory responses to exposures. Whereas the recent development of rodent models and exposure systems have yielded valuable data, we need new systems to examine the combined effects of multiple contaminants in order to increase our understanding of farm-exposure-induced negative health effects.


Lung inflammation Pig and chicken farms Pesticides Animal models Human exposures 



Dr. Baljit Singh’s research program, especially the work providing the data included in this review article, is supported by grants from the Natural Sciences and Engineering Research Council of Canada and Saskatchewan Lung Association. Dr. Sethi’s work is funded by Guru Angad Dev Veterinary and Animal Sciences University, India and the Indian Council of Medical Research (ICMR), New Delhi. The research work of Dr. Charavaryamath and Dr. Schneberger carried out during their PhD training program in Dr. Singh’s laboratory was supported by scholarships from the Canadian Institutes of Health Research and University of Saskatchewan. Current work in Dr. Charavaryamath’s laboratory is supported by funding from Iowa State University, Ames, Iowa, USA.


  1. Abdelsalam EB (1987) Organophosphorus compounds. I. Toxicity in domestic animals. Vet Res Commun 11:211–219PubMedCrossRefGoogle Scholar
  2. Abolhassani M, Guais A, Chaumet-Riffaud P, Sasco AJ, Schwartz L (2009) Carbon dioxide inhalation causes pulmonary inflammation. Am J Physiol Lung Cell Mol Physiol 296:L657–L665PubMedCrossRefGoogle Scholar
  3. Abraham E (2003) Neutrophils and acute lung injury. Crit Care Med 31:S195–S199PubMedCrossRefGoogle Scholar
  4. Adir Y, Sznajder JI (2003) Regulation of lung edema clearance by dopamine. Isr Med Assoc J 5:47–50PubMedGoogle Scholar
  5. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511PubMedCrossRefGoogle Scholar
  6. Alluwaimi AM, Hussein Y (2007) Diazinon immunotoxicity in mice: modulation of cytokines level and their gene expression. Toxicology 236:123–131PubMedCrossRefGoogle Scholar
  7. An H, Xu H, Yu Y, Zhang M, Qi R, Yan X, Liu S, Wang W, Guo Z, Qin Z, Cao X (2002) Up-regulation of TLR9 gene expression by LPS in mouse macrophages via activation of NF-kappaB, ERK and p38 MAPK signal pathways. Immunol Lett 81:165–169PubMedCrossRefGoogle Scholar
  8. Ansari BA, Kumar K (1988) Cypermethrin toxicity: effect on the carbohydrate metabolism of the Indian catfish, Heteropneustes fossilis. Sci Total Environ 72:161–166PubMedCrossRefGoogle Scholar
  9. Arrighi HM, Hertz-Picciotto I (1994) The evolving concept of the healthy worker survivor effect. Epidemiology 5:189–196PubMedCrossRefGoogle Scholar
  10. Augusto LA, Synguelakis M, Johansson J, Pedron T, Girard R, Chaby R (2003) Interaction of pulmonary surfactant protein C with CD14 and lipopolysaccharide. Infect Immun 71:61–67PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bailey KL, Poole JA, Mathisen TL, Wyatt TA, Von Essen SG, Romberger DJ (2008) Toll-like receptor 2 is upregulated by hog confinement dust in an IL-6-dependent manner in the airway epithelium. Am J Physiol Lung Cell Mol Physiol 294:L1049–L1054PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bailey K, Wyatt T, Wells S, Klein E, Robinson J, Romberger D, Poole J (2014) Dimethylarginine dimethylaminohydrolase (DDAH) overexpression attenuates agricultural organic dust extract-induced inflammation. J Environ Immunol Toxicol 2:72–78PubMedPubMedCentralCrossRefGoogle Scholar
  13. Baldi I, Lebailly P, Rondeau V, Bouchart V, Blanc-Lapierre A, Bouvier G, Canal-Raffin M, Garrigou A (2012) Levels and determinants of pesticide exposure in operators involved in treatment of vineyards: results of the PESTEXPO Study. J Expo Sci Environ Epidemiol 22:593–600PubMedCrossRefGoogle Scholar
  14. Banks CN, Lein PJ (2012) A review of experimental evidence linking neurotoxic organophosphorus compounds and inflammation. Neurotoxicology 33:575–584PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bannenberg GL (2010) Therapeutic applicability of anti-inflammatory and proresolving polyunsaturated fatty acid-derived lipid mediators. Sci World J 10:676–712CrossRefGoogle Scholar
  16. Barnes PJ (1994) Cytokines as mediators of chronic asthma. Am J Respir Crit Care Med 150:S42–S49PubMedCrossRefGoogle Scholar
  17. Batzer G, Lam DP, Paulus P, Boasen J, Ng N, Horner AA (2007) Using house dust extracts to understand the immunostimulatory activities of living environments. Immunobiology 212:491–498PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bauer C, Kielian T, Wyatt TA, Romberger DJ, West WW, Gleason AM, Poole JA (2013) Myeloid differentiation factor 88-dependent signaling is critical for acute organic dust-induced airway inflammation in mice. Am J Respir Cell Mol Biol 48:781–789PubMedPubMedCentralCrossRefGoogle Scholar
  19. Beane Freeman LE, Bonner MR, Blair A, Hoppin JA, Sandler DP, Lubin JH, Dosemeci M, Lynch CF, Knott C, Alavanja MC (2005) Cancer incidence among male pesticide applicators in the Agricultural Health Study cohort exposed to diazinon. Am J Epidemiol 162:1070–1079PubMedCrossRefGoogle Scholar
  20. Berahovich RD, Miao Z, Wang Y, Premack B, Howard MC, Schall TJ (2005) Proteolytic activation of alternative CCR1 ligands in inflammation. J Immunol 174:7341–7351PubMedCrossRefGoogle Scholar
  21. Bridges JP, Davis HW, Damodarasamy M, Kuroki Y, Howles G, Hui DY, McCormack FX (2000) Pulmonary surfactant proteins A and D are potent endogenous inhibitors of lipid peroxidation and oxidative cellular injury. J Biol Chem 275:38848–38855PubMedCrossRefGoogle Scholar
  22. Budin SB, Saimin H, Taib IS, Jayusman PA, Mohamed J (2012) A histological studies of rats’ lung subacutely treated with Fenitrothion. Int J Collab Res Intern Med Public Health 4:744–752Google Scholar
  23. Burch JB, Svendsen E, Siegel PD, Wagner SE, von Essen S, Keefe T, Mehaffy J, Martinez AS, Bradford M, Baker L, Cranmer B, Saito R, Tessari J, Linda P, Andersen C, Christensen O, Koehncke N, Reynolds SJ (2010) Endotoxin exposure and inflammation markers among agricultural workers in Colorado and Nebraska. J Toxicol Environ Health A 73:5–22PubMedCrossRefGoogle Scholar
  24. Casey JA, Kim BF, Larsen J, Price LB, Nachman KE (2015) Industrial food animal production and community health. Curr Environ Health Rep 2:259–271PubMedCrossRefGoogle Scholar
  25. Catrysse L, Vereecke L, Beyaert R, van Loo G (2014) A20 in inflammation and autoimmunity. Trends Immunol 35:22–31PubMedCrossRefGoogle Scholar
  26. Charavaryamath C, Singh B (2006) Pulmonary effects of exposure to pig barn air. J Occup Med Toxicol 1:10PubMedPubMedCentralCrossRefGoogle Scholar
  27. Charavaryamath C, Janardhan KS, Townsend HG, Willson P, Singh B (2005) Multiple exposures to swine barn air induce lung inflammation and airway hyper-responsiveness. Respir Res 6:50PubMedPubMedCentralCrossRefGoogle Scholar
  28. Charavaryamath C, Janardhan KS, Caldwell S, Singh B (2006) Pulmonary intravascular monocytes/macrophages in a rat model of sepsis. Anat Rec A Discov Mol Cell Evol Biol 288:1259–1271PubMedCrossRefGoogle Scholar
  29. Charavaryamath C, Juneau V, Suri SS, Janardhan KS, Townsend H, Singh B (2008a) Role of Toll-like receptor 4 in lung inflammation following exposure to swine barn air. Exp Lung Res 34:19–35PubMedCrossRefGoogle Scholar
  30. Charavaryamath C, Keet T, Aulakh GK, Townsend HG, Singh B (2008b) Lung responses to secondary endotoxin challenge in rats exposed to pig barn air. J Occup Med Toxicol 3:24PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chen G, Shaw MH, Kim YG, Nunez G (2009) NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol 4:365–398PubMedCrossRefGoogle Scholar
  32. Chiang N, Fredman G, Backhed F, Oh SF, Vickery T, Schmidt BA, Serhan CN (2012) Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484:524–528PubMedPubMedCentralCrossRefGoogle Scholar
  33. Clark PC, McQuitty JB (1988) Air quality in farrowing barns. Can Agric Eng 30:173–178Google Scholar
  34. Clark H, Palaniyar N, Strong P, Edmondson J, Hawgood S, Reid KB (2002) Surfactant protein D reduces alveolar macrophage apoptosis in vivo. J Immunol 169:2892–2899PubMedCrossRefGoogle Scholar
  35. Corzo CA, Culhane M, Dee S, Morrison RB, Torremorell M (2013) Airborne detection and quantification of swine influenza A virus in air samples collected inside, outside and downwind from swine barns. PLoS ONE 8:e71444PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dery O, Corvera CU, Steinhoff M, Bunnett NW (1998) Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 274:C1429–C1452PubMedGoogle Scholar
  37. Dinis-Oliveira RJ, Duarte JA, Sanchez-Navarro A, Remiao F, Bastos ML, Carvalho F (2008) Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol 38:13–71PubMedCrossRefGoogle Scholar
  38. Done SH, Chennells DJ, Gresham AC, Williamson S, Hunt B, Taylor LL, Bland V, Jones P, Armstrong D, White RP, Demmers TG, Teer N, Wathes CM (2005) Clinical and pathological responses of weaned pigs to atmospheric ammonia and dust. Vet Rec 157:71–80PubMedCrossRefGoogle Scholar
  39. Donham KJ, Leininger JR (1984) Animal studies of potential chronic lung disease of workers in swine confinement buildings. Am J Vet Res 45:926–931PubMedGoogle Scholar
  40. Donham KJ, Cumro D, Reynolds S (2002) Synergistic effects of dust and ammonia on the occupational health effects of poultry production workers. J Agromed 8:57–76CrossRefGoogle Scholar
  41. Dosman JA, Fukushima Y, Senthilselvan A, Kirychuk SP, Lawson JA, Pahwa P, Cormier Y, Hurst T, Barber EM, Rhodes CS (2006) Respiratory response to endotoxin and dust predicts evidence of inflammatory response in volunteers in a swine barn. Am J Ind Med 49:761–766PubMedCrossRefGoogle Scholar
  42. Du Clos TW (2013) Pentraxins: structure, function, and role in inflammation. ISRN Inflamm 2013:379040PubMedPubMedCentralGoogle Scholar
  43. Dunkelberger JR, Song WC (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20:34–50PubMedCrossRefGoogle Scholar
  44. Duramad P, Holland NT (2011) Biomarkers of immunotoxicity for environmental and public health research. Int J Environ Res Public Health 8:1388–1401PubMedPubMedCentralCrossRefGoogle Scholar
  45. Duramad P, Tager IB, Leikauf J, Eskenazi B, Holland NT (2006) Expression of Th1/Th2 cytokines in human blood after in vitro treatment with chlorpyrifos, and its metabolites, in combination with endotoxin LPS and allergen Der p1. J Appl Toxicol 26:458–465PubMedCrossRefGoogle Scholar
  46. Eghbal MA, Pennefather PS, O’Brien PJ (2004) H2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation. Toxicology 203:69–76PubMedCrossRefGoogle Scholar
  47. Eltom S, Belvisi MG, Yew-Booth L, Dekkak B, Maher SA, Dubuis ED, Jones V, Fitzgerald KA, Birrell MA (2014) TLR4 activation induces IL-1beta release via an IPAF dependent but caspase 1/11/8 independent pathway in the lung. Respir Res 15:87PubMedPubMedCentralCrossRefGoogle Scholar
  48. Faller S, Zimmermann KK, Strosing KM, Engelstaedter H, Buerkle H, Schmidt R, Spassov SG, Hoetzel A (2012) Inhaled hydrogen sulfide protects against lipopolysaccharide-induced acute lung injury in mice. Med Gas Res 2:26PubMedPubMedCentralCrossRefGoogle Scholar
  49. Fisher HK, Clements JA, Tierney DF, Wright RR (1975) Pulmonary effects of paraquat in the first day after injection. Am J Physiol 228:1217–1223PubMedGoogle Scholar
  50. Fryer AD, Lein PJ, Howard AS, Yost BL, Beckles RA, Jett DA (2004) Mechanisms of organophosphate insecticide-induced airway hyperreactivity. Am J Physiol Lung Cell Mol Physiol 286:L963–L969PubMedCrossRefGoogle Scholar
  51. Gagnaire B, Gay M, Huvet A, Daniel JY, Saulnier D, Renault T (2007) Combination of a pesticide exposure and a bacterial challenge: in vivo effects on immune response of Pacific oyster, Crassostrea gigas (Thunberg). Aquat Toxicol 84:92–102PubMedCrossRefGoogle Scholar
  52. Gamage LN, Charavaryamath C, Swift TL, Singh B (2007) Lung inflammation following a single exposure to swine barn air. J Occup Med Toxicol 2:18PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gardai SJ, Xiao YQ, Dickinson M, Nick JA, Voelker DR, Greene KE, Henson PM (2003) By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 115:13–23PubMedCrossRefGoogle Scholar
  54. Gil HW, Oh MH, Woo KM, Lee EY, Oh MH, Hong SY (2007) Relationship between pulmonary surfactant protein and lipid peroxidation in lung injury due to paraquat intoxication in rats. Korean J Intern Med 22:67–72PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gill SS, Suri SS, Janardhan KS, Caldwell S, Duke T, Singh B (2008) Role of pulmonary intravascular macrophages in endotoxin-induced lung inflammation and mortality in a rat model. Respir Res 9:69PubMedPubMedCentralCrossRefGoogle Scholar
  56. Guo CJ, Atochina-Vasserman EN, Abramova E, Foley JP, Zaman A, Crouch E, Beers MF, Savani RC, Gow AJ (2008) S-nitrosylation of surfactant protein-D controls inflammatory function. PLoS Biol 6:e266PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gustin P, Urbain B, Prouvost JF, Ansay M (1994) Effects of atmospheric ammonia on pulmonary hemodynamics and vascular permeability in pigs: interaction with endotoxins. Toxicol Appl Pharmacol 125:17–26PubMedCrossRefGoogle Scholar
  58. Hashimoto C, Hudson KL, Anderson KV (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52:269–279PubMedCrossRefGoogle Scholar
  59. Hawley B, Schaeffer J, Poole JA, Dooley GP, Reynolds S, Volckens J (2015) Differential response of human nasal and bronchial epithelial cells upon exposure to size-fractionated dairy dust. J Toxicol Environ Health A 78:583–594PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hayashi F, Means TK, Luster AD (2003) Toll-like receptors stimulate human neutrophil function. Blood 102:2660–2669PubMedCrossRefGoogle Scholar
  61. Heumann D, Lauener R, Ryffel B (2003) The dual role of LBP and CD14 in response to Gram-negative bacteria or Gram-negative compounds. J Endotoxin Res 9:381–384PubMedCrossRefGoogle Scholar
  62. Hoene V, Peiser M, Wanner R (2006) Human monocyte-derived dendritic cells express TLR9 and react directly to the CpG-A oligonucleotide D19. J Leukoc Biol 80:1328–1336PubMedCrossRefGoogle Scholar
  63. Hoppin JA, Umbach DM, London SJ, Alavanja MC, Sandler DP (2002) Chemical predictors of wheeze among farmer pesticide applicators in the Agricultural Health Study. Am J Respir Crit Care Med 165:683–689PubMedCrossRefGoogle Scholar
  64. Hulse EJ, Clutton RE, Drummond G, Eddleston M (2014) Translational toxicological research: investigating and preventing acute lung injury in organophosphorus insecticide poisoning. J R Army Med Corps 160:191–192PubMedCrossRefGoogle Scholar
  65. Ishida Y, Takayasu T, Kimura A, Hayashi T, Kakimoto N, Miyashita T, Kondo T (2006) Gene expression of cytokines and growth factors in the lungs after paraquat administration in mice. Leg Med (Tokyo) 8:102–109CrossRefGoogle Scholar
  66. Ivanov S, Dragoi AM, Wang X, Dallacosta C, Louten J, Musco G, Sitia G, Yap GS, Wan Y, Birson CA, Bianchi ME, Wang H, Chu WM (2007) A novel role for HMGB1 in TLR9-mediated inflammatory responses to CPG-DNA. Blood 110:1970–1981PubMedPubMedCentralCrossRefGoogle Scholar
  67. Janardhan KS, McIsaac M, Fowlie J, Shrivastav A, Caldwell S, Sharma RK, Singh B (2006) Toll like receptor-4 expression in lipopolysaccharide induced lung inflammation. Histol Histopathol 21:687–696PubMedGoogle Scholar
  68. Jia HP, Kline JN, Penisten A, Apicella MA, Gioannini TL, Weiss J, McCray PB Jr (2004) Endotoxin responsiveness of human airway epithelia is limited by low expression of MD-2. Am J Physiol Lung Cell Mol Physiol 287:L428–L437PubMedCrossRefGoogle Scholar
  69. Jiang XC, Bruce C (1995) Regulation of murine plasma phospholipid transfer protein activity and mRNA levels by lipopolysaccharide and high cholesterol diet. J Biol Chem 270:17133–17138PubMedCrossRefGoogle Scholar
  70. Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, Prestwich GD, Mascarenhas MM, Garg HG, Quinn DA, Homer RJ, Goldstein DR, Bucala R, Lee PJ, Medzhitov R, Noble PW (2005) Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11:1173–1179PubMedCrossRefGoogle Scholar
  71. Jiang L, Zhang Y, Sun Y, Hu L, Gao D (2015) Artesunate attenuates lung injury in paraquat-intoxicated rats via downregulation of inflammatory cytokines. Clin Lab 61:1601–1607PubMedGoogle Scholar
  72. Jones W, Morring K, Olenchock SA, Williams T, Hickey J (1984) Environmental study of poultry confinement buildings. Am Ind Hyg Assoc J 45:760–766PubMedCrossRefGoogle Scholar
  73. Just N, Duchaine C, Singh B (2009) An aerobiological perspective of dust in cage-housed and floor-housed poultry operations. J Occup Med Toxicol 4:13PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, Mah S, Han SH, Lee H, Paik SG, Lee JO (2009) Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31:873–884PubMedCrossRefGoogle Scholar
  75. Karaoz E, Gultekin F, Akdogan M, Oncu M, Gokcimen A (2002) Protective role of melatonin and a combination of vitamin C and vitamin E on lung toxicity induced by chlorpyrifos-ethyl in rats. Exp Toxicol Pathol 54:97–108PubMedCrossRefGoogle Scholar
  76. Kawai T, Akira S (2008) Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 1143:1–20PubMedCrossRefGoogle Scholar
  77. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11:115–122PubMedCrossRefGoogle Scholar
  78. Kirychuk SP, Reynolds SJ, Koehncke NK, Lawson J, Willson P, Senthilselvan A, Marciniuk D, Classen HL, Crowe T, Just N, Schneberger D, Dosman JA (2010) Endotoxin and dust at respirable and nonrespirable particle sizes are not consistent between cage- and floor-housed poultry operations. Ann Occup Hyg 54:824–832PubMedGoogle Scholar
  79. Kishore U, Greenhough TJ, Waters P, Shrive AK, Ghai R, Kamran MF, Bernal AL, Reid KB, Madan T, Chakraborty T (2006) Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol 43:1293–1315PubMedCrossRefGoogle Scholar
  80. Landahl HD, Herrmann RG (1950) Retention of vapors and gases in the human nose and lung. Arch Ind Hyg Occup Med 1:36–45PubMedGoogle Scholar
  81. Langford NJ (2005) Carbon dioxide poisoning. Toxicol Rev 24:229–235PubMedCrossRefGoogle Scholar
  82. Lin R, Yang L, Nakhaei P, Sun Q, Sharif-Askari E, Julkunen I, Hiscott J (2006) Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J Biol Chem 281:2095–2103PubMedCrossRefGoogle Scholar
  83. Liu CJ, Men WJ, Liu YJ (2002) The pollution of pesticides in soils and its bioremediation. Syst Sci Compr Stud Agric 18:295–297Google Scholar
  84. Lorenz E, Frees KL, Schwartz DA (2001) Determination of the TLR4 genotype using allele-specific PCR. Biotechniques 31:22–24PubMedGoogle Scholar
  85. Mamane A, Baldi I, Tessier JF, Raherison C, Bouvier G (2015) Occupational exposure to pesticides and respiratory health. Eur Respir Rev 24:306–319PubMedCrossRefGoogle Scholar
  86. Martin WT, Zhang Y, Willson P, Archer TP, Kinahan C, Barber EM (1996) Bacterial and fungal flora of dust deposits in a pig building. Occup Environ Med 53:484–487PubMedPubMedCentralCrossRefGoogle Scholar
  87. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397PubMedCrossRefGoogle Scholar
  88. Mekonnen Y, Agonafir T (2004) Lung function and respiratory symptoms of pesticide sprayers in state farms of Ethiopia. Ethiop Med J 42:261–266PubMedGoogle Scholar
  89. Merkowsky K, Sethi RS, Gill JP, Singh B (2016) Fipronil induces lung inflammation in vivo and cell death in vitro. J Occup Med Toxicol 11:10PubMedPubMedCentralCrossRefGoogle Scholar
  90. Michiels A, Piepers S, Ulens T, Van Ransbeeck N, Del Pozo Sacristan R, Sierens A, Haesebrouck F, Demeyer P, Maes D (2015) Impact of particulate matter and ammonia on average daily weight gain, mortality and lung lesions in pigs. Prev Vet Med 121:99–107PubMedCrossRefGoogle Scholar
  91. Murad YM, Clay TM (2009) CpG oligodeoxynucleotides as TLR9 agonists: therapeutic applications in cancer. BioDrugs 23:361–375PubMedCrossRefGoogle Scholar
  92. Najafi G, Tehrani AA, Jalali AS, Babaei M, Najafi A (2014) Sublethal dose of diazinon induces pulmonary toxicity in rat: histopathological evidence. J Interdiscip Histopathol 2:26–31CrossRefGoogle Scholar
  93. Naren AP, Cormet-Boyaka E, Fu J, Villain M, Blalock JE, Quick MW, Kirk KL (1999) CFTR chloride channel regulation by an interdomain interaction. Science 286:544–548PubMedCrossRefGoogle Scholar
  94. Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, van der Meer JH, van de Veerdonk FL, Ferwerda G, Heinhuis B, Devesa I, Funk CJ, Mason RJ, Kullberg BJ, Rubartelli A, van der Meer JW, Dinarello CA (2009) Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 113:2324–2335PubMedPubMedCentralCrossRefGoogle Scholar
  95. Newman LS, Rose CS, Bresnitz EA, Rossman MD, Barnard J, Frederick M, Terrin ML, Weinberger SE, Moller DR, McLennan G, Hunninghake G, DePalo L, Baughman RP, Iannuzzi MC, Judson MA, Knatterud GL, Thompson BW, Teirstein AS, Yeager H Jr, Johns CJ, Rabin DL, Rybicki BA, Cherniack R, ACCESS Research Group (2004) A case control etiologic study of sarcoidosis: environmental and occupational risk factors. Am J Respir Crit Care Med 170:1324–1330PubMedCrossRefGoogle Scholar
  96. Noaishi MA, Afify MMM, Allah AAA (2013) Study the inhalation exposure effect of pesticides mixture in the white rat. Nat Sci 11:45–54Google Scholar
  97. Nordgren TM, Heires AJ, Wyatt TA, Poole JA, LeVan TD, Cerutis DR, Romberger DJ (2013) Maresin-1 reduces the pro-inflammatory response of bronchial epithelial cells to organic dust. Respir Res 14:51PubMedPubMedCentralCrossRefGoogle Scholar
  98. Nordgren TM, Bauer CD, Heires AJ, Poole JA, Wyatt TA, West WW, Romberger DJ (2015) Maresin-1 reduces airway inflammation associated with acute and repetitive exposures to organic dust. Transl Res 166:57–69PubMedPubMedCentralCrossRefGoogle Scholar
  99. Oliveira-Nascimento L, Massari P, Wetzler LM (2012) The role of TLR2 in infection and immunity. Front Immunol 3:79PubMedPubMedCentralCrossRefGoogle Scholar
  100. Oosting M, Cheng SC, Bolscher JM, Vestering-Stenger R, Plantinga TS, Verschueren IC, Arts P, Garritsen A, van Eenennaam H, Sturm P, Kullberg BJ, Hoischen A, Adema GJ, van der Meer JW, Netea MG, Joosten LA (2014) Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proc Natl Acad Sci U S A 111:E4478–E4484PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ouellette CA, Feddes JJR, Wegner II, Barber EM (1999) A portable environmental monitoring system to assess barn worker indoor air quality. J Agric Saf Health 5:383–394CrossRefGoogle Scholar
  102. Pallvi SRS, Mukhopadhyay CS, Verma R (2016) Expression of TLR4 mRNA in lungs of mice after single and multiple exposures to poultry barn air. Indian J Anim Sci 86:128–130Google Scholar
  103. Pandit AA, Choudhary S, Verma R, Singh B, Sethi RS (2016) Imidacloprid induced histomorphological changes and expression of TLR-4 and TNFα in lung. Pestic Biochem Physiol 131:9–17PubMedCrossRefGoogle Scholar
  104. Parbhakar OP, Duke T, Townsend HG, Singh B (2005) Depletion of pulmonary intravascular macrophages partially inhibits lipopolysaccharide-induced lung inflammation in horses. Vet Res 36:557–569PubMedCrossRefGoogle Scholar
  105. Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, Abraham E (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377PubMedCrossRefGoogle Scholar
  106. Pastva AM, Wright JR, Williams KL (2007) Immunomodulatory roles of surfactant proteins A and D: implications in lung disease. Proc Am Thorac Soc 4:252–257PubMedPubMedCentralCrossRefGoogle Scholar
  107. Poole JA, Kielian T, Wyatt TA, Gleason AM, Stone J, Palm K, West WW, Romberger DJ (2011) Organic dust augments nucleotide-binding oligomerization domain expression via an NF-{kappa}B pathway to negatively regulate inflammatory responses. Am J Physiol Lung Cell Mol Physiol 301:L296–L306PubMedPubMedCentralCrossRefGoogle Scholar
  108. Poole JA, Wyatt TA, Romberger DJ, Staab E, Simet S, Reynolds SJ, Sisson JH, Kielian T (2015) MyD88 in lung resident cells governs airway inflammatory and pulmonary function responses to organic dust treatment. Respir Res 16:111PubMedPubMedCentralCrossRefGoogle Scholar
  109. Pownall HJ, Hickson-Bick D, Massey JB (1991) Effects of hydrophobicity on turnover of plasma high density lipoproteins labeled with phosphatidylcholine ethers in the rat. J Lipid Res 32:793–800PubMedGoogle Scholar
  110. Proskocil BJ, Bruun DA, Jacoby DB, van Rooijen N, Lein PJ, Fryer AD (2013) Macrophage TNF-alpha mediates parathion-induced airway hyperreactivity in guinea pigs. Am J Physiol Lung Cell Mol Physiol 304:L519–L529PubMedPubMedCentralCrossRefGoogle Scholar
  111. Proskocil B, Lein P, Jacoby D, Fyer A (2014) Organophosphorus pesticides directly simulate macrophages to increase expression of growth factors and cytokines. Eur Respir J 44 (Suppl 58):4779Google Scholar
  112. Qian J, Liu L, Chen L, Lu X, Zhu C (2015) Increased toll-like receptor 9 expression is associated with the severity of paraquat-induced lung injury in mice. Hum Exp Toxicol 34:430–438PubMedCrossRefGoogle Scholar
  113. Raanan R, Harley KG, Balmes JR, Bradman A, Lipsett M, Eskenazi B (2015) Early-life exposure to organophosphate pesticides and pediatric respiratory symptoms in the CHAMACOS cohort. Environ Health Perspect 123:179–185PubMedGoogle Scholar
  114. Rady MI (2009) Effects of exposure to diazinon on the lung and small intestine of guinea pig, histological and some histochemical changes. Braz Arch Biol Technol 52:317–326CrossRefGoogle Scholar
  115. Rallabhandi P, Nhu QM, Toshchakov VY, Piao W, Medvedev AE, Hollenberg MD, Fasano A, Vogel SN (2008) Analysis of proteinase-activated receptor 2 and TLR4 signal transduction: a novel paradigm for receptor cooperativity. J Biol Chem 283:24314–24325PubMedPubMedCentralCrossRefGoogle Scholar
  116. Rangasamy T, Guo J, Mitzner WA, Roman J, Singh A, Fryer AD, Yamamoto M, Kensler TW, Tuder RM, Georas SN, Biswal S (2005) Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med 202:47–59PubMedPubMedCentralCrossRefGoogle Scholar
  117. Rekha B, Naik SN, Prasad R (2006) Pesticide residue in organic and conventional food-risk analysis. J Chem Health Saf 13:12–19CrossRefGoogle Scholar
  118. Romberger DJ, Bodlak V, Von Essen SG, Mathisen T, Wyatt TA (2002) Hog barn dust extract stimulates IL-8 and IL-6 release in human bronchial epithelial cells via PKC activation. J Appl Physiol 93:289–296PubMedCrossRefGoogle Scholar
  119. Romberger DJ, Heires AJ, Nordgren TM, Souder CP, West W, Liu XD, Poole JA, Toews ML, Wyatt TA (2015) Proteases in agricultural dust induce lung inflammation through PAR-1 and PAR-2 activation. Am J Physiol Lung Cell Mol Physiol 309:L388–L399PubMedPubMedCentralCrossRefGoogle Scholar
  120. Romberger DJ, Heires AJ, Nordgren TM, Poole JA, Toews ML, West WW, Wyatt TA (2016) Beta2-adrenergic agonists attenuate organic dust-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 311:L101–L110PubMedCrossRefGoogle Scholar
  121. Rose MS, Lock EA, Smith LL, Wyatt I (1976) Paraquat accumulation: tissue and species specificity. Biochem Pharmacol 25:419–423PubMedCrossRefGoogle Scholar
  122. Rowsey PJ, Gordon CJ (1999) Tumor necrosis factor is involved in chlorpyrifos—induced changes in core temperature in the female rat. Toxicol Lett 109:51–59PubMedCrossRefGoogle Scholar
  123. Sano H, Sohma H, Muta T, Nomura S, Voelker DR, Kuroki Y (1999) Pulmonary surfactant protein A modulates the cellular response to smooth and rough lipopolysaccharides by interaction with CD14. J Immunol 163:387–395PubMedGoogle Scholar
  124. Satomi Y, Tsuchiya W, Mihara K, Ota M, Kasahara Y, Akahori F (2004) Gene expression analysis of the lung following paraquat administration in rats using DNA microarray. J Toxicol Sci 29:91–100PubMedCrossRefGoogle Scholar
  125. Schenker MB, Christiani D, Cormier Y, Dimich-Ward H, Doekes G, Dosman J, Douwes J, Dowling K, Enarson D, Green F, Heederik D, Husman K, Kennedy S, Kullman G, Lacasse Y, Lawson B, Malmberg P, May J, McCurdy S, Merchant J, Myers J, Nieuwenhuijsen M, Olenchock S, Saiki C, Schwartz D, Seiber J, Thorne P, Wagner G, White N, Xu X, Chan-Yeung M (1998) Respiratory health hazards in agriculture. Am J Respir Crit Care Med 158:S1–S76CrossRefGoogle Scholar
  126. Schneberger D, Aharonson-Raz K, Singh B (2012) Pulmonary intravascular macrophages and lung health: what are we missing? Am J Physiol Lung Cell Mol Physiol 302:L498–L503PubMedCrossRefGoogle Scholar
  127. Schneberger D, Caldwell S, Kanthan R, Singh B (2013) Expression of Toll-like receptor 9 in mouse and human lungs. J Anat 222:495–503PubMedPubMedCentralCrossRefGoogle Scholar
  128. Schneberger D, Aulakh G, Channabasappa S, Singh B (2016) Toll-like receptor 9 partially regulates lung inflammation induced following exposure to chicken barn air. J Occup Med Toxicol 11:31PubMedPubMedCentralCrossRefGoogle Scholar
  129. Schuijs MJ, Willart MA, Vergote K, Gras D, Deswarte K, Ege MJ, Madeira FB, Beyaert R, van Loo G, Bracher F, von Metius E, Chanez P, Lambrecht BN, Hammad H (2015) Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science 349:1106–1110PubMedCrossRefGoogle Scholar
  130. Senthilselvan A, Dosman JA, Kirychuk SP, Barber EM, Rhodes CS, Zhang Y, Hurst TS (1997a) Accelerated lung function decline in swine confinement workers. Chest 111:1733–1741PubMedCrossRefGoogle Scholar
  131. Senthilselvan A, Zhang Y, Dosman JA, Barber EM, Holfeld LE, Kirychuk SP, Cormier Y, Hurst TS, Rhodes CS (1997b) Positive human health effects of dust suppression with canola oil in swine barns. Am J Respir Crit Care Med 156:410–417PubMedCrossRefGoogle Scholar
  132. Senthilselvan A, Dosman JA, Chenard L, Burch LH, Predicala BZ, Sorowski R, Schneberger D, Hurst T, Kirychuk S, Gerdts V, Cormier Y, Rennie DC, Schwartz DA (2009) Toll-like receptor 4 variants reduce airway response in human subjects at high endotoxin levels in a swine facility. J Allergy Clin Immunol 123:1034–1040PubMedCrossRefGoogle Scholar
  133. Sethi RS, Schneberger D, Singh B (2013) Characterization of the lung epithelium of wild-type and TLR9(-/-) mice after single and repeated exposures to chicken barn air. Exp Toxicol Pathol 65:357–364PubMedCrossRefGoogle Scholar
  134. Shang Y, Jiang Y, Xu S, Wu Y, Wu Z, Yuan S, Yao S (2009) Reduction of pulmonary inflammatory response by erythropoietin in a rat model of endotoxaemia. Chin Med J 122:834–838PubMedGoogle Scholar
  135. Sidiropoulou E, Sachana M, Hargreaves AJ, Woldehiwet Z (2011) Effects of diazinon-oxon and fipronil on IL-1β and TNF-α cytokine production in human THP-1 promyelocytic cells. Toxicol Lett 205:S151CrossRefGoogle Scholar
  136. Sigurdarson ST, O’Shaughnessy PT, Watt JA, Kline JN (2004) Experimental human exposure to inhaled grain dust and ammonia: towards a model of concentrated animal feeding operations. Am J Ind Med 46:345–348PubMedCrossRefGoogle Scholar
  137. Singh B, Pearce JW, Gamage LN, Janardhan K, Caldwell S (2004) Depletion of pulmonary intravascular macrophages inhibits acute lung inflammation. Am J Physiol Lung Cell Mol Physiol 286:L363–L372PubMedCrossRefGoogle Scholar
  138. Stamme C, Muller M, Hamann L, Gutsmann T, Seydel U (2002) Surfactant protein a inhibits lipopolysaccharide-induced immune cell activation by preventing the interaction of lipopolysaccharide with lipopolysaccharide-binding protein. Am J Respir Cell Mol Biol 27:353–360PubMedCrossRefGoogle Scholar
  139. Sugiyama K, Muroi M, Tanamoto K (2008) A novel TLR4-binding peptide that inhibits LPS-induced activation of NF-kappaB and in vivo toxicity. Eur J Pharmacol 594:152–156PubMedCrossRefGoogle Scholar
  140. Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3–9PubMedCrossRefGoogle Scholar
  141. Thorn J (2001) The inflammatory response in humans after inhalation of bacterial endotoxin: a review. Inflamm Res 50:254–261PubMedCrossRefGoogle Scholar
  142. Tomita M, Nohno T, Okuyama T, Nishimatsu S, Adachi J (2002) Paraquat-induced gene expression in rat lung tissues using a differential display reverse transcription-polymerase chain reaction. Arch Toxicol 76:530–537PubMedCrossRefGoogle Scholar
  143. Tomita M, Okuyama T, Katsuyama H, Miura Y, Nishimura Y, Hidaka K, Otsuki T, Ishikawa T (2007) Mouse model of paraquat-poisoned lungs and its gene expression profile. Toxicology 231:200–209PubMedCrossRefGoogle Scholar
  144. Truong DH, Eghbal MA, Hindmarsh W, Roth SH, O’Brien PJ (2006) Molecular mechanisms of hydrogen sulfide toxicity. Drug Metab Rev 38:733–744PubMedCrossRefGoogle Scholar
  145. Vaure C, Liu Y (2014) A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol 5:316PubMedPubMedCentralCrossRefGoogle Scholar
  146. Viegas S, Mateus V, Almeida-Silva M, Carolino E, Viegas C (2013) Occupational exposure to particulate matter and respiratory symptoms in Portuguese swine barn workers. J Toxic Environ Health A 76:1007–1014CrossRefGoogle Scholar
  147. Vogelzang PF, van der Gulden JW, Folgering H, Kolk JJ, Heederik D, Preller L, Tielen MJ, van Schayck CP (1998) Endotoxin exposure as a major determinant of lung function decline in pig farmers. Am J Respir Crit Care Med 157:15–18PubMedCrossRefGoogle Scholar
  148. Von Essen SG, Robbins RA, Thompson AB, Ertl RF, Linder J, Rennard S (1988) Mechanisms of neutrophil recruitment to the lung by grain dust exposure. Am Rev Respir Dis 138:921–927CrossRefGoogle Scholar
  149. Wang N, Gates KL, Trejo H, Favoreto S Jr, Schleimer RP, Sznajder JI, Beitel GJ, Sporn PH (2010) Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage. FASEB J 24:2178–2190PubMedPubMedCentralCrossRefGoogle Scholar
  150. Watanabe W, Yoshida H, Hirose A, Akashi T, Takeshita T, Kuroki N, Shibata A, Hongo S, Hashiguchi S, Konno K, Kurokawa M (2013) Perinatal exposure to insecticide methamidophos suppressed production of proinflammatory cytokines responding to virus infection in lung tissues in mice. Biomed Res Int 2013:151807PubMedPubMedCentralCrossRefGoogle Scholar
  151. Weaver TE, Conkright JJ (2001) Function of surfactant proteins B and C. Annu Rev Physiol 63:555–578PubMedCrossRefGoogle Scholar
  152. West AP, Shadel GS, Ghosh S (2011) Mitochondria in innate immune responses. Nat Rev Immunol 11:389–402PubMedPubMedCentralCrossRefGoogle Scholar
  153. Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK (2010) The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal 12:1147–1154PubMedPubMedCentralCrossRefGoogle Scholar
  154. Wright JR (2005) Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 5:58–68PubMedCrossRefGoogle Scholar
  155. Wyatt TA, Slager RE, Devasure J, Auvermann BW, Mulhern ML, Von Essen S, Mathisen T, Floreani AA, Romberger DJ (2007) Feedlot dust stimulation of interleukin-6 and -8 requires protein kinase Cepsilon in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 293:L1163–L1170PubMedCrossRefGoogle Scholar
  156. Wyatt TA, Slager RE, Heires AJ, Devasure JM, Vonessen SG, Poole JA, Romberger DJ (2010) Sequential activation of protein kinase C isoforms by organic dust is mediated by tumor necrosis factor. Am J Respir Cell Mol Biol 42:706–715PubMedCrossRefGoogle Scholar
  157. Yavuz Y, Yurumez Y, Ciftci IH, Sahin O, Saglam H, Buyukokuroglu M (2008) Effect of diphenhydramine on myocardial injury caused by organophosphate poisoning. Clin Toxicol (Phila) 46:67–70CrossRefGoogle Scholar
  158. Zahringer U, Lindner B, Inamura S, Heine H, Alexander C (2008) TLR2—promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology 213:205–224PubMedCrossRefGoogle Scholar
  159. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107PubMedPubMedCentralCrossRefGoogle Scholar
  160. Zhang Y, Cardell LO, Adner M (2007) IL-1beta induces murine airway 5-HT2A receptor hyperresponsiveness via a non-transcriptional MAPK-dependent mechanism. Respir Res 8:29PubMedPubMedCentralCrossRefGoogle Scholar
  161. Zuskin E, Mustajbegovic J, Schachter EN, Kern J, Deckovic-Vukres V, Trosic I, Chiarelli A (2008) Respiratory function in pesticide workers. J Occup Environ Med 50:1299–1305PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ram S. Sethi
    • 1
    • 2
  • David Schneberger
    • 3
  • Chandrashekhar Charavaryamath
    • 4
  • Baljit Singh
    • 5
    Email author
  1. 1.School of Animal BiotechnologyGuru Angad Dev Veterinary and Animal Sciences UniversityLudhianaIndia
  2. 2.Department of Veterinary Biomedical SciencesUniversity of SaskatchewanSaskatoonCanada
  3. 3.Canadian Centre for Health and Safety in AgricultureUniversity of SaskatchewanSaskatoonCanada
  4. 4.Department of Biomedical SciencesIowa State UniversityAmesUSA
  5. 5.Faculty of Veterinary MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations