Advertisement

Cell and Tissue Research

, Volume 367, Issue 3, pp 525–536 | Cite as

Unravelling the networks dictating host resistance versus tolerance during pulmonary infections

  • Isabelle Meunier
  • Eva Kaufmann
  • Jeffrey Downey
  • Maziar DivangahiEmail author
Review

Abstract

The appearance of single cell microorganisms on earth dates back to more than 3.5 billion years ago, ultimately leading to the development of multicellular organisms approximately 3 billion years later. The evolutionary burst of species diversity and the “struggle for existence”, as proposed by Darwin, generated a complex host defense system. Host survival during infection in vital organs, such as the lung, requires a delicate balance between host defense, which is essential for the detection and elimination of pathogens and host tolerance, which is critical for minimizing collateral tissue damage. Whereas the cellular and molecular mechanisms of host defense against many invading pathogens have been extensively studied, our understanding of host tolerance as a key mechanism in maintaining host fitness is extremely limited. This may also explain why current therapeutic and preventive approaches targeting only host defense mechanisms have failed to provide full protection against severe infectious diseases, including pulmonary influenza virus and Mycobacterium tuberculosis infections. In this review, we aim to outline various host strategies of resistance and tolerance for effective protection against acute or chronic pulmonary infections.

Keywords

Host resistance Host tolerance Pulmonary infections Tuberculosis Influenza virus 

Notes

Acknowledgements

This work was supported by the Canadian Institute of Health Research (CIHR) Foundation Grant (FDN-143273) to M.D., who also holds a CIHR New Investigator Award and by the Fonds de la Recherche du Quebec-Sante (FRQS). I.M. is a recipient of the American Association of Immunologists Careers in Immunology Awards. E.K. is a recipient of funds from the German Research Foundation (DFG).

References

  1. Allen JE, Maizels RM (2011) Diversity and dialogue in immunity to helminths. Nat Rev Immunol 11:375–388PubMedCrossRefGoogle Scholar
  2. Allen JE, Sutherland TE (2014) Host protective roles of type 2 immunity: parasite killing and tissue repair, flip sides of the same coin. Semin Immunol 26:329–340PubMedPubMedCentralCrossRefGoogle Scholar
  3. Antonelli LR, Gigliotti Rothfuchs A, Goncalves R, Roffe E, Cheever AW, Bafica A, Salazar AM, Feng CG, Sher A (2010) Intranasal poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest 120:1674–1682PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arcanjo AC, Mazzocco G, de Oliveira SF, Plewczynski D, Radomski JP (2014) Role of the host genetic variability in the influenza A virus susceptibility. Acta Biochim Pol 61:403–419PubMedGoogle Scholar
  5. Aubert RD, Kamphorst AO, Sarkar S, Vezys V, Ha SJ, Barber DL, Ye L, Sharpe AH, Freeman GJ, Ahmed R (2011) Antigen-specific CD4 T-cell help rescues exhausted CD8 T cells during chronic viral infection. Proc Natl Acad Sci U S A 108:21182–21187PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ayres JS, Schneider DS (2008) A signaling protease required for melanization in Drosophila affects resistance and tolerance to infections. PLoS Biol 6:e305PubMedCentralCrossRefGoogle Scholar
  7. Ayres JS, Schneider DS (2009) The role of anorexia in resistance and tolerance to infection in Drosophila. PLoS Biol 7:e1000150PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ayres JS, Schneider DS (2012) Tolerance of infections. Annu Rev Immunol 30:271–294PubMedCrossRefGoogle Scholar
  9. Ayres JS, Freitag N, Schneider DS (2008) Identification of Drosophila mutants altering defense of and endurance to Listeria monocytogenes infection. Genetics 178:1807–1815PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barber DL, Mayer-Barber KD, Feng CG, Sharpe AH, Sher A (2011) CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J Immunol 186:1598–1607PubMedCrossRefGoogle Scholar
  11. Barry CE 3rd, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D (2009) The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7:845–855PubMedPubMedCentralGoogle Scholar
  12. Behar SM, Divangahi M, Remold HG (2010) Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 8:668–674PubMedPubMedCentralGoogle Scholar
  13. Behr MA, Divangahi M (2015) Freund’s adjuvant, NOD2 and mycobacteria. Curr Opin Microbiol 23:126–132PubMedCrossRefGoogle Scholar
  14. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, Wilkinson KA, Banchereau R, Skinner J, Wilkinson RJ, Quinn C, Blankenship D, Dhawan R, Cush JJ, Mejias A, Ramilo O, Kon OM, Pascual V, Banchereau J, Chaussabel D, O’Garra A (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466:973–977PubMedPubMedCentralCrossRefGoogle Scholar
  15. Best A, White A, Boots M (2014) The coevolutionary implications of host tolerance. Evolution 68:1426–1435PubMedCrossRefGoogle Scholar
  16. Blankley S, Berry MP, Graham CM, Bloom CI, Lipman M, O’Garra A (2014) The application of transcriptional blood signatures to enhance our understanding of the host response to infection: the example of tuberculosis. Philos Trans R Soc Lond B Biol Sci 369:20130427PubMedPubMedCentralCrossRefGoogle Scholar
  17. Braciale TJ, Sun J, Kim TS (2012) Regulating the adaptive immune response to respiratory virus infection. Nat Rev Immunol 12:295–305PubMedPubMedCentralCrossRefGoogle Scholar
  18. Buccheri S, Reljic R, Caccamo N, Ivanyi J, Singh M, Salerno A, Dieli F (2007) IL-4 depletion enhances host resistance and passive IgA protection against tuberculosis infection in BALB/c mice. Eur J Immunol 37:729–737PubMedCrossRefGoogle Scholar
  19. Carlson CM, Turpin EA, Moser LA, O’Brien KB, Cline TD, Jones JC, Tumpey TM, Katz JM, Kelley LA, Gauldie J, Schultz-Cherry S (2010) Transforming growth factor-beta: activation by neuraminidase and role in highly pathogenic H5N1 influenza pathogenesis. PLoS Pathog 6:e1001136PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM (2002) Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes initiation of T-cell immunity. Infect Immun 70:4501–4509PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chang YJ, Kim HY, Albacker LA, Baumgarth N, McKenzie AN, Smith DE, Dekruyff RH, Umetsu DT (2011) Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol 12:631–638PubMedPubMedCentralCrossRefGoogle Scholar
  22. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, Perlman S (2016) Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 19:181–193PubMedPubMedCentralCrossRefGoogle Scholar
  23. Charbonnel N, Pages M, Sironen T, Henttonen H, Vapalahti O, Mustonen J, Vaheri A (2014) Immunogenetic factors affecting susceptibility of humans and rodents to hantaviruses and the clinical course of hantaviral disease in humans. Viruses 6:2214–2241PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O’Neill R, Schickli J, Palese P, Henklein P, Bennink JR, Yewdell JW (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7:1306–1312PubMedCrossRefGoogle Scholar
  25. Cobat A, Gallant CJ, Simkin L, Black GF, Stanley K, Hughes J, Doherty TM, Hanekom WA, Eley B, Jais JP, Boland-Auge A, van Helden P, Casanova JL, Abel L, Hoal EG, Schurr E, Alcais A (2009) Two loci control tuberculin skin test reactivity in an area hyperendemic for tuberculosis. J Exp Med 206:2583–2591PubMedPubMedCentralCrossRefGoogle Scholar
  26. Comas I, Chakravartti J, Small PM, Galagan J, Niemann S, Kremer K, Ernst JD, Gagneux S (2010) Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 42:498–503PubMedPubMedCentralCrossRefGoogle Scholar
  27. Corbett EL, Marston B, Churchyard GJ, De Cock KM (2006) Tuberculosis in sub-Saharan Africa: opportunities, challenges, and change in the era of antiretroviral treatment. Lancet 367:926–937PubMedCrossRefGoogle Scholar
  28. Coulombe F, Divangahi M, Veyrier F, Leseleuc L de, Gleason JL, Yang Y, Kelliher MA, Pandey AK, Sassetti CM, Reed MB, Behr MA (2009) Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J Exp Med 206:1709–1716Google Scholar
  29. Coulombe F, Jaworska J, Verway M, Tzelepis F, Massoud A, Gillard J, Wong G, Kobinger G, Xing Z, Couture C, Joubert P, Fritz JH, Powell WS, Divangahi M (2014) Targeted prostaglandin E2 inhibition enhances antiviral immunity through induction of type I interferon and apoptosis in macrophages. Immunity 40:554–568PubMedCrossRefGoogle Scholar
  30. Cronan MR, Beerman RW, Rosenberg AF, Saelens JW, Johnson MG, Oehlers SH, Sisk DM, Smith KLJ, Medvitz NA, Miller SE, Trinh LA, Fraser SE, Madden JF, Turner J, Stout JE, Lee S, Tobin DM (2016) Macrophage epithelial reprogramming underlies mycobacterial granuloma formation and promotes infection. Immunity 45(4):861–876Google Scholar
  31. Crowe CR, Chen K, Pociask DA, Alcorn JF, Krivich C, Enelow RI, Ross TM, Witztum JL, Kolls JK (2009) Critical role of IL-17RA in immunopathology of influenza infection. J Immunol 183:5301–5310PubMedPubMedCentralCrossRefGoogle Scholar
  32. Damjanovic D, Divangahi M, Kugathasan K, Small CL, Zganiacz A, Brown EG, Hogaboam CM, Gauldie J, Xing Z (2011) Negative regulation of lung inflammation and immunopathology by TNF-alpha during acute influenza infection. Am J Pathol 179:2963–2976PubMedPubMedCentralCrossRefGoogle Scholar
  33. Davicino RC, Eliçabe RJ, Di Genaro MS, Rabinovich GA (2011)Coupling pathogen recognition to innate immunity through glycan-dependent mechanisms.Int Immunopharmacol 11:1457–1463PubMedCrossRefGoogle Scholar
  34. Davis JM, Ramakrishnan L (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136(1):37–49Google Scholar
  35. Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L (2002) Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17:693–702PubMedCrossRefGoogle Scholar
  36. Der SD, Zhou A, Williams BR, Silverman RH (1998) Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci U S A 95:15623–15628PubMedPubMedCentralCrossRefGoogle Scholar
  37. Didierlaurent A, Goulding J, Patel S, Snelgrove R, Low L, Bebien M, Lawrence T, Rijt LS van, Lambrecht BN, Sirard JC, Hussell T (2008) Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection. J Exp Med 205:323–329Google Scholar
  38. Divangahi M, Mostowy S, Coulombe F, Kozak R, Guillot L, Veyrier F, Kobayashi KS, Flavell RA, Gros P, Behr MA (2008) NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. J Immunol 181:7157–7165PubMedCrossRefGoogle Scholar
  39. Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT, Lee DM, Fortune S, Behar SM, Remold HG (2009) Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol 10:899–906PubMedPubMedCentralCrossRefGoogle Scholar
  40. Divangahi M, Desjardins D, Nunes-Alves C, Remold HG, Behar SM (2010) Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat Immunol 11:751–758PubMedPubMedCentralCrossRefGoogle Scholar
  41. Divangahi M, King IL, Pernet E (2015) Alveolar macrophages and type I IFN in airway homeostasis and immunity. Trends Immunol 36:307–314PubMedCrossRefGoogle Scholar
  42. Doly J, Civas A, Navarro S, Uze G (1998) Type I interferons: expression and signalization. Cell Mol Life Sci 54:1109–1121PubMedCrossRefGoogle Scholar
  43. Entezari M, Weiss DJ, Sitapara R, Whittaker L, Wargo MJ, Li J, Wang H, Yang H, Sharma L, Phan BD, Javdan M, Chavan SS, Miller EJ, Tracey KJ, Mantell LL (2012) Inhibition of high-mobility group box 1 protein (HMGB1) enhances bacterial clearance and protects against Pseudomonas aeruginosa pneumonia in cystic fibrosis.Mol Med 18:477–485PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101:890–898PubMedPubMedCentralCrossRefGoogle Scholar
  45. Fehr T, Schoedon G, Odermatt B, Holtschke T, Schneemann M, Bachmann MF, Mak TW, Horak I, Zinkernagel RM (1997) Crucial role of interferon consensus sequence binding protein, but neither of interferon regulatory factor 1 nor of nitric oxide synthesis for protection against murine listeriosis. J Exp Med 185:921–931PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ferwerda G, Girardin SE, Kullberg BJ, Le Bourhis L, Jong DJ de, Langenberg DM, Crevel R van, Adema GJ, Ottenhoff TH, Van der Meer JW, Netea MG (2005) NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog 1:279–285Google Scholar
  47. Freudenberg MA, Merlin T, Kalis C, Chvatchko Y, Stubig H, Galanos C (2002) Cutting edge: a murine, IL-12-independent pathway of IFN-gamma induction by gram-negative bacteria based on STAT4 activation by Type I IFN and IL-18 signaling. J Immunol 169:1665–1668PubMedCrossRefGoogle Scholar
  48. Gandotra S, Schnappinger D, Monteleone M, Hillen W, Ehrt S (2007) In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat Med 13:1515–1520PubMedPubMedCentralCrossRefGoogle Scholar
  49. Garofalo RP, Kolli D, Casola A (2013) Respiratory syncytial virus infection: mechanisms of redox control and novel therapeutic opportunities. Antioxid Redox Signal 18:186–217PubMedPubMedCentralCrossRefGoogle Scholar
  50. Goulding J, Godlee A, Vekaria S, Hilty M, Snelgrove R, Hussell T (2011) Lowering the threshold of lung innate immune cell activation alters susceptibility to secondary bacterial superinfection. J Infect Dis 204:1086–1094PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gralinski LE, Baric RS (2015) Molecular pathology of emerging coronavirus infections. J Pathol 235:185–195PubMedCrossRefGoogle Scholar
  52. Guirado E, Schlesinger LS, Kaplan G (2013) Macrophages in tuberculosis: friend or foe. Semin Immunopathol 35:563–583PubMedPubMedCentralCrossRefGoogle Scholar
  53. Heitmann L, Abad Dar M, Schreiber T, Erdmann H, Behrends J, McKenzie AN, Brombacher F, Ehlers S, Holscher C (2014) The IL-13/IL-4Ralpha axis is involved in tuberculosis-associated pathology. J Pathol 234:338–350PubMedPubMedCentralCrossRefGoogle Scholar
  54. Helming L, Gordon S (2007) Macrophage fusion induced by IL-4 alternative activation is a multistage process involving multiple target molecules. Eur J Immunol 37:33–42PubMedCrossRefGoogle Scholar
  55. Holt PG, Strickland DH, Wikstrom ME, Jahnsen FL (2008) Regulation of immunological homeostasis in the respiratory tract. Nat Rev Immunol 8:142–152PubMedCrossRefGoogle Scholar
  56. Houben D, Demangel C, Ingen J van, Perez J, Baldeon L, Abdallah AM, Caleechurn L, Bottai D, Zon M van, Punder K de, Laan T van der, Kant A, Bossers-de Vries R, Willemsen P, Bitter W, Soolingen D van, Brosch R, Wel N van der, Peters PJ (2012) ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol 14:1287–1298Google Scholar
  57. Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ, Morin PM, Marks CB, Padiyar J, Goulding C, Gingery M, Eisenberg D, Russell RG, Derrick SC, Collins FM, Morris SL, King CH, Jacobs WR Jr (2003) The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A 100:12420–12425PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hunter RL (2011) Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis (Edinb) 91:497–509CrossRefGoogle Scholar
  59. Huynh ML, Fadok VA, Henson PM (2002) Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 109:41–50PubMedPubMedCentralCrossRefGoogle Scholar
  60. Inohara N, Chamaillard M, McDonald C, Nunez G (2005) NOD-LRR proteins: role in host–microbial interactions and inflammatory disease. Annu Rev Biochem 74:355–383PubMedCrossRefGoogle Scholar
  61. Iwasaki A, Pillai PS (2014) Innate immunity to influenza virus infection. Nat Rev Immunol 14:315–328PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jackson DJ, Makrinioti H, Rana BM, Shamji BW, Trujillo-Torralbo MB, Footitt J, Jerico D-R, Telcian AG, Nikonova A, Zhu J, Aniscenko J, Gogsadze L, Bakhsoliani E, Traub S, Dhariwal J, Porter J, Hunt D, Hunt T, Stanciu LA, Khaitov M, Bartlett NW, Edwards MR, Kon OM, Mallia P, Papadopoulos NG, Akdis CA, Westwick J, Edwards MJ, Cousins DJ, Walton RP, Johnston SL (2014) IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am J Respir Crit Care Med 190:1373–1382PubMedPubMedCentralCrossRefGoogle Scholar
  63. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54:1–13PubMedCrossRefGoogle Scholar
  64. Jaworska J, Coulombe F, Downey J, Tzelepis F, Shalaby K, Tattoli I, Berube J, Rousseau S, Martin JG, Girardin SE, McCullers JA, Divangahi M (2014) NLRX1 prevents mitochondrial induced apoptosis and enhances macrophage antiviral immunity by interacting with influenza virus PB1-F2 protein. Proc Natl Acad Sci U S A 111:E2110–E2119PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jondle CN, Sharma A, Simonson TJ, Larson B, Mishra BB, Sharma J (2016) Macrophage galactose-type lectin-1 deficiency is associated with increased neutrophilia and hyperinflammation in gram-negative pneumonia.J Immunol 196:3088–3096PubMedCrossRefGoogle Scholar
  66. Jong MD de, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, Hoang DM, Chau NV, Khanh TH, Dong VC, Qui PT, Cam BV, Ha do Q, Guan Y, Peiris JS, Chinh NT, Hien TT, Farrar J (2006) Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 12:1203–1207Google Scholar
  67. Jung YJ, LaCourse R, Ryan L, North RJ (2002) Evidence inconsistent with a negative influence of T helper 2 cells on protection afforded by a dominant T helper 1 response against Mycobacterium tuberculosis lung infection in mice. Infect Immun 70:6436–6443PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kaplan G, Post FA, Moreira AL, Wainwright H, Kreiswirth BN, Tanverdi M, Mathema B, Ramaswamy SV, Walther G, Steyn LM, Barry CE 3rd, Bekker LG (2003) Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect Immun 71:7099–7108PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116PubMedCrossRefGoogle Scholar
  70. Keynan Y, Malik S, Fowke KR (2013) The role of polymorphisms in host immune genes in determining the severity of respiratory illness caused by pandemic H1N1 influenza. Public Health Genom 16:9–16CrossRefGoogle Scholar
  71. Khalil N (1999) TGF-beta: from latent to active. Microbes Infect 1:1255–1263PubMedCrossRefGoogle Scholar
  72. Knapp S, Leemans JC, Florquin S, Branger J, Maris NA, Pater J, Rooijen N van, Poll T van der (2003) Alveolar macrophages have a protective antiinflammatory role during murine pneumococcal pneumonia.Am J Respir Crit Care Med 167:171–179Google Scholar
  73. Knethen A von, Sha LK, Kuchler L, Heeg AK, Fuhrmann D, Heide H, Wittig I, Maier TJ, Steinhilber D, Brune B (2013) 5-Lipoxygenase contributes to PPARgamma activation in macrophages in response to apoptotic cells. Cell Signal 25:2762–2768Google Scholar
  74. Kohlmeier JE, Cookenham T, Roberts AD, Miller SC, Woodland DL (2010) Type I interferons regulate cytolytic activity of memory CD8(+) T cells in the lung airways during respiratory virus challenge. Immunity 33:96–105PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kosmider B, Messier EM, Janssen WJ, Nahreini P, Wang J, Hartshorn KL, Mason RJ (2012) Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus. Respir Res 13:43PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kover PX, Schaal BA (2002) Genetic variation for disease resistance and tolerance among Arabidopsis thaliana accessions. Proc Natl Acad Sci U S A 99:11270–11274PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30:16–34PubMedCrossRefGoogle Scholar
  78. Lazzaro BP, Galac MR (2006) Disease pathology: wasting energy fighting infection. Curr Biol 16:R964–R965PubMedCrossRefGoogle Scholar
  79. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983PubMedCrossRefGoogle Scholar
  80. Loebbermann J, Schnoeller C, Thornton H, Durant L, Sweeney NP, Schuijs M, O’Garra A, Johansson C, Openshaw PJ (2012) IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice. PLoS ONE 7:e32371PubMedPubMedCentralCrossRefGoogle Scholar
  81. Macneil A, Nichol ST, Spiropoulou CF (2011) Hantavirus pulmonary syndrome. Virus Res 162:138–147PubMedCrossRefGoogle Scholar
  82. Manca C, Tsenova L, Bergtold A, Freeman S, Tovey M, Musser JM, Barry CE 3rd, Freedman VH, Kaplan G (2001) Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha/beta. Proc Natl Acad Sci U S A 98:5752–5757PubMedPubMedCentralCrossRefGoogle Scholar
  83. Manca C, Tsenova L, Freeman S, Barczak AK, Tovey M, Murray PJ, Barry C, Kaplan G (2005) Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J Interferon Cytokine Res 25:694–701PubMedCrossRefGoogle Scholar
  84. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229:176–185PubMedCrossRefGoogle Scholar
  85. Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS (2012) Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11:469–480PubMedPubMedCentralCrossRefGoogle Scholar
  86. Marakalala MJ, Raju RM, Sharma K, Zhang YJ, Eugenin EA, Prideaux B, Daudelin IB, Chen PY, Booty MG, Kim JH, Eum SY, Via LE, Behar SM, Barry CE 3rd, Mann M, Dartois V, Rubin EJ (2016) Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat Med 22:531–538PubMedPubMedCentralCrossRefGoogle Scholar
  87. Martin CJ, Booty MG, Rosebrock TR, Nunes-Alves C, Desjardins DM, Keren I, Fortune SM, Remold HG, Behar SM (2012)Efferocytosis is an innate antibacterial mechanism. Cell Host Microbe 12:289–300PubMedPubMedCentralCrossRefGoogle Scholar
  88. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483PubMedCrossRefGoogle Scholar
  89. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305PubMedCrossRefGoogle Scholar
  90. Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, Derrick SC, Shi R, Kumar NP, Wei W, Yuan X, Zhang G, Cai Y, Babu S, Catalfamo M, Salazar AM, Via LE, Barry CE 3rd, Sher A (2014) Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511:99–103PubMedPubMedCentralCrossRefGoogle Scholar
  91. McAuley JL, Hornung F, Boyd KL, Smith AM, McKeon R, Bennink J, Yewdell JW, McCullers JA (2007) Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe 2:240–249PubMedPubMedCentralCrossRefGoogle Scholar
  92. McAuley JL, Chipuk JE, Boyd KL, Van De Velde N, Green DR, McCullers JA (2010) PB1-F2 proteins from H5N1 and 20 century pandemic influenza viruses cause immunopathology. PLoS Pathog 6:e1001014PubMedPubMedCentralCrossRefGoogle Scholar
  93. McKinstry KK, Strutt TM, Buck A, Curtis JD, Dibble JP, Huston G, Tighe M, Hamada H, Sell S, Dutton RW, Swain SL (2009) IL-10 deficiency unleashes an influenza-specific Th17 response and enhances survival against high-dose challenge. J Immunol 182:7353–7363PubMedPubMedCentralCrossRefGoogle Scholar
  94. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397PubMedCrossRefGoogle Scholar
  95. Medzhitov R, Schneider DS, Soares MP (2012) Disease tolerance as a defense strategy. Science 335:936–941PubMedPubMedCentralCrossRefGoogle Scholar
  96. Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, Angelosanto JM, Laidlaw BJ, Yang CY, Sathaliyawala T, Kubota M, Turner D, Diamond JM, Goldrath AW, Farber DL, Collman RG, Wherry EJ, Artis D (2011) Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 12:1045–1054PubMedPubMedCentralCrossRefGoogle Scholar
  97. Morrison J, Pai M, Hopewell PC (2008) Tuberculosis and latent tuberculosis infection in close contacts of people with pulmonary tuberculosis in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Infect Dis 8:359–368PubMedCrossRefGoogle Scholar
  98. Neagos J, Standiford TJ, Newstead MW, Zeng X, Huang SK, Ballinger MN (2015) Epigenetic regulation of tolerance to Toll-like receptor ligands in alveolar epithelial cells. Am J Respir Cell Mol Biol 53:872–881PubMedPubMedCentralCrossRefGoogle Scholar
  99. Nelson B, Zhou X, White M, Hartshorn K, Takahashi K, Kinane TB, Anandaiah A, Koziel H (2014) Recombinant human mannose-binding lectin dampens human alveolar macrophage inflammatory responses to influenza A virus in vitro. J Leukoc Biol 95:715–722PubMedCrossRefGoogle Scholar
  100. Novak ML, Koh TJ (2013) Phenotypic transitions of macrophages orchestrate tissue repair. Am J Pathol 183:1352–1363PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ojo OO, Ryu MH, Jha A, Unrhu H, Halayko AJ (2015) High-mobility group box 1 promotes extracellular matrix synthesis and wound repair in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 309:154–1366Google Scholar
  102. Orme IM, Robinson RT, Cooper AM (2015) The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol 16:57–63PubMedCrossRefGoogle Scholar
  103. Palmer EM, Holbrook BC, Arimilli S, Parks GD, Alexander-Miller MA (2010) IFNgamma-producing, virus-specific CD8+ effector cells acquire the ability to produce IL-10 as a result of entry into the infected lung environment. Virology 404:225–230PubMedPubMedCentralCrossRefGoogle Scholar
  104. Pandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F, Behr MA, Fitzgerald KA, Sassetti CM, Kelliher MA (2009) NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog 5:e1000500Google Scholar
  105. Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, Girardin SE (2014) NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol 14:9–23PubMedCrossRefGoogle Scholar
  106. Podinovskaia M, Lee W, Caldwell S, Russell DG (2013) Infection of macrophages with Mycobacterium tuberculosis induces global modifications to phagosomal function. Cell Microbiol 15:843–859PubMedPubMedCentralCrossRefGoogle Scholar
  107. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088PubMedCrossRefGoogle Scholar
  108. Raberg L, Sim D, Read AF (2007) Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science 318:812–814PubMedCrossRefGoogle Scholar
  109. Raberg L, Graham AL, Read AF (2009) Decomposing health: tolerance and resistance to parasites in animals. Philos Trans R Soc Lond B Biol Sci 364:37–49PubMedCrossRefGoogle Scholar
  110. Rast JP, Smith LC, Loza-Coll M, Hibino T, Litman GW (2006) Genomic insights into the immune system of the sea urchin. Science 314:952–956PubMedPubMedCentralCrossRefGoogle Scholar
  111. Ravichandran KS (2010) Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med 207:1807–1817PubMedPubMedCentralCrossRefGoogle Scholar
  112. Read AF, Graham AL, Raberg L (2008) Animal defenses against infectious agents: is damage control more important than pathogen control. PLoS Biol 6:e4PubMedCrossRefGoogle Scholar
  113. Roy E, Brennan J, Jolles S, Lowrie DB (2008) Beneficial effect of anti-interleukin-4 antibody when administered in a murine model of tuberculosis infection. Tuberculosis (Edinb) 88:197–202CrossRefGoogle Scholar
  114. Rygiel TP, Rijkers ES, Ruiter T de, Stolte EH, Valk M van der, Rimmelzwaan GF, Boon L, Loon AM van, Coenjaerts FE, Hoek RM, Tesselaar K, Meyaard L (2009) Lack of CD200 enhances pathological T cell responses during influenza infection. J Immunol 183:1990–1996Google Scholar
  115. Saenz SA, Noti M, Artis D (2010) Innate immune cell populations function as initiators and effectors in Th2 cytokine responses. Trends Immunol 31:407–413PubMedCrossRefGoogle Scholar
  116. Samstein M, Schreiber HA, Leiner IM, Susac B, Glickman MS, Pamer EG (2013) Essential yet limited role for CCR2(+) inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. eLife 2:e01086PubMedPubMedCentralCrossRefGoogle Scholar
  117. Schaible UE, Winau F, Sieling PA, Fischer K, Collins HL, Hagens K, Modlin RL, Brinkmann V, Kaufmann SH (2003) Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat Med 9:1039–1046PubMedCrossRefGoogle Scholar
  118. Schneider DS, Ayres JS (2008) Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol 8:889–895PubMedPubMedCentralCrossRefGoogle Scholar
  119. Schneider WM, Chevillotte MD, Rice CM (2014) Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545PubMedPubMedCentralCrossRefGoogle Scholar
  120. Schultz-Cherry S, Hinshaw VS (1996) Influenza virus neuraminidase activates latent transforming growth factor beta. J Virol 70:8624–8629PubMedPubMedCentralGoogle Scholar
  121. Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122:669–682PubMedCrossRefGoogle Scholar
  122. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795PubMedPubMedCentralCrossRefGoogle Scholar
  123. Singh V, Jamwal S, Jain R, Verma P, Gokhale R, Rao KV (2012) Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe 12:669–681PubMedCrossRefGoogle Scholar
  124. Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S, Edwards L, Gwyer E, Sedgwick JD, Barclay AN, Hussell T (2008) A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol 9:1074–1083PubMedCrossRefGoogle Scholar
  125. Soares MP, Gozzelino R, Weis S (2014) Tissue damage control in disease tolerance. Trends Immunol 35:483–494PubMedCrossRefGoogle Scholar
  126. Sonnenberg P, Glynn JR, Fielding K, Murray J, Godfrey-Faussett P, Shearer S (2005) How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J Infect Dis 191:150–158PubMedCrossRefGoogle Scholar
  127. Spits H, Di Santo JP (2011) The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol 12:21–27PubMedCrossRefGoogle Scholar
  128. Stanley SA, Johndrow JE, Manzanillo P, Cox JS (2007) The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol 178:3143–3152PubMedCrossRefGoogle Scholar
  129. Stier MT, Bloodworth MH, Toki S, Newcomb DC, Goleniewska K, Boyd KL, Quitalig M, Hotard AL, Moore ML, Hartert TV, Zhou B, McKenzie AN, Peebles RS Jr (2016) Respiratory syncytial virus infection activates IL-13-producing group 2 innate lymphoid cells through thymic stromal lymphopoietin. J Allergy Clin Immunol 138:814–824PubMedCrossRefGoogle Scholar
  130. Sun J, Madan R, Karp CL, Braciale TJ (2009) Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10. Nat Med 15:277–284PubMedPubMedCentralCrossRefGoogle Scholar
  131. Sun J, Cardani A, Sharma AK, Laubach VE, Jack RS, Muller W, Braciale TJ (2011) Autocrine regulation of pulmonary inflammation by effector T-cell derived IL-10 during infection with respiratory syncytial virus. PLoS Pathog 7:e1002173PubMedPubMedCentralCrossRefGoogle Scholar
  132. Sun L, Cornell TT, LeVine A, Berlin AA, Hinkovska-Galcheva V, Fleszar AJ, Lukacs NW, Shanley TP (2013) Dual role of interleukin-10 in the regulation of respiratory syncitial virus (RSV)-induced lung inflammation. Clin Exp Immunol 172:263–279PubMedPubMedCentralCrossRefGoogle Scholar
  133. Szretter KJ, Gangappa S, Lu X, Smith C, Shieh WJ, Zaki SR, Sambhara S, Tumpey TM, Katz JM (2007) Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice. J Virol 81:2736–2744PubMedCrossRefGoogle Scholar
  134. Takeuchi O, Akira S (2009) Innate immunity to virus infection. Immunol Rev 227:75–86PubMedCrossRefGoogle Scholar
  135. Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, Shea JE, McClain JB, Hussey GD, Hanekom WA, Mahomed H, McShane H (2013) Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381:1021–1028PubMedCrossRefGoogle Scholar
  136. Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, Biswal S (2006) Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest 116:984–995PubMedPubMedCentralCrossRefGoogle Scholar
  137. Tian X, Xu F, Lung WY, Meyerson C, Ghaffari AA, Cheng G, Deng JC (2012) Poly I:C enhances susceptibility to secondary pulmonary infections by gram-positive bacteria. PLoS ONE 7:e41879PubMedPubMedCentralCrossRefGoogle Scholar
  138. Tzelepis F, Verway M, Daoud J, Gillard J, Hassani-Ardakani K, Dunn J, Downey J, Gentile ME, Jaworska J, Sanchez AM, Nedelec Y, Vali H, Tabrizian M, Kristof AS, King IL, Barreiro LB, Divangahi M (2015) Annexin1 regulates DC efferocytosis and cross-presentation during Mycobacterium tuberculosis infection. J Clin Invest 125:752–768PubMedCrossRefGoogle Scholar
  139. Unger BL, Faris AN, Ganesan S, Comstock AT, Hershenson MB, Sajjan US (2012) Rhinovirus attenuates non-typeable Hemophilus influenzae-stimulated IL-8 responses via TLR2-dependent degradation of IRAK-1. PLoS Pathog 8:e1002969PubMedPubMedCentralCrossRefGoogle Scholar
  140. Varga ZT, Ramos I, Hai R, Schmolke M, Garcia-Sastre A, Fernandez-Sesma A, Palese P (2011) The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein. PLoS Pathog 7:e1002067PubMedPubMedCentralCrossRefGoogle Scholar
  141. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I (1997) Immunosuppressive effects of apoptotic cells. Nature 390:350–351PubMedCrossRefGoogle Scholar
  142. Vynnycky E, Fine PE (1997) The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection. Epidemiol Infect 119:183–201PubMedPubMedCentralCrossRefGoogle Scholar
  143. Welin A, Eklund D, Stendahl O, Lerm M (2011) Human macrophages infected with a high burden of ESAT-6-expressing M. tuberculosis undergo caspase-1- and cathepsin B-independent necrosis. PLoS ONE 6:e20302PubMedPubMedCentralCrossRefGoogle Scholar
  144. Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115PubMedCrossRefGoogle Scholar
  145. Williams AE, Humphreys IR, Cornere M, Edwards L, Rae A, Hussell T (2005) TGF-beta prevents eosinophilic lung disease but impairs pathogen clearance. Microbes Infect 7:365–374PubMedCrossRefGoogle Scholar
  146. Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, Ernst JD (2008) Initiation of the adaptive response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not in the lungs. J Exp Med 205:105–115PubMedPubMedCentralCrossRefGoogle Scholar
  147. Zaiss DM, Gause WC, Osborne LC, Artis D (2015) Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity 42:216–226PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Isabelle Meunier
    • 1
  • Eva Kaufmann
    • 1
  • Jeffrey Downey
    • 1
  • Maziar Divangahi
    • 1
    • 2
    Email author
  1. 1.Department of Medicine, Department of Microbiology & Immunology, and Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie LaboratoriesMcGill UniversityMontrealCanada
  2. 2.RI-MUHC, Centre for Translational Biology, Meakins-Christie LaboratoriesMcGill UniversityMontrealCanada

Personalised recommendations