Cell and Tissue Research

, Volume 367, Issue 3, pp 687–705 | Cite as

Comparative analysis of the mechanical signals in lung development and compensatory growth

Review

Abstract

This review compares the manner in which physical stress imposed on the parenchyma, vasculature and thorax and the thoraco-pulmonary interactions, drive both developmental and compensatory lung growth. Re-initiation of anatomical lung growth in the mature lung is possible when the loss of functioning lung units renders the existing physiologic-structural reserves insufficient for maintaining adequate function and physical stress on the remaining units exceeds a critical threshold. The appropriate spatial and temporal mechanical interrelationships and the availability of intra-thoracic space, are crucial to growth initiation, follow-on remodeling and physiological outcome. While the endogenous potential for compensatory lung growth is retained and may be pharmacologically augmented, supra-optimal mechanical stimulation, unbalanced structural growth, or inadequate remodeling may limit functional gain. Finding ways to optimize the signal–response relationships and resolve structure-function discrepancies are major challenges that must be overcome before the innate compensatory ability could be fully realized. Partial pneumonectomy reproducibly removes a known fraction of functioning lung units and remains the most robust model for examining the adaptive mechanisms, structure–function consequences and plasticity of the remaining functioning lung units capable of regeneration. Fundamental mechanical stimulus–response relationships established in the pneumonectomy model directly inform the exploration of effective approaches to maximize compensatory growth and function in chronic destructive lung diseases, transplantation and bioengineered lungs.

Keywords

Mechanotransduction Mechanical stress Lung development Pneumonectomy Lung regeneration 

Notes

Acknowledgments

Supported by the National Heart Lung and Blood Institute Grants R01 HL40070 and U01 HL111146. The contents of this article are solely the responsibility of the author and do not necessarily represent the official views of the National Heart, Lung and Blood Institute or of the National Institutes of Health.

References

  1. Bal HS, Ghoshal NG (1988) Morphology of the terminal bronchiolar region of common laboratory mammals. Lab Anim 22:76–82PubMedCrossRefGoogle Scholar
  2. Benachi A, Chailley-Heu B, Delezoide AL, Dommergues M, Brunelle F, Dumez Y, Bourbon JR (1998) Lung growth and maturation after tracheal occlusion in diaphragmatic hernia. Am J Respir Crit Care Med 157:921–927PubMedCrossRefGoogle Scholar
  3. Birath G, Malmberg R, Simonsson BG (1965) Lung function after pneumonectomy in man. Clin Sci 29:59–72PubMedGoogle Scholar
  4. Blackburn ST (2013) Maternal, fetal and neonatal physiology. Elsevier Saunders, Maryland HeightsGoogle Scholar
  5. Blewett CJ, Zgleszewski SE, Chinoy MR, Krummel TM, Cilley RE (1996) Bronchial ligation enhances murine fetal lung development in whole-organ culture. J Pediatr Surg 31:869–877PubMedCrossRefGoogle Scholar
  6. Bonanno A, Albano GD, Siena L, Montalbano AM, Riccobono L, Anzalone G, Chiappara G, Gagliardo R, Profita M, Sala A (2016) Prostaglandin E(2) possesses different potencies in inducing vascular endothelial growth factor and interleukin-8 production in COPD human lung fibroblasts. Prostaglandins Leukot Essent Fatty Acids 106:11–18PubMedCrossRefGoogle Scholar
  7. Browning EA, Chatterjee S, Fisher AB (2012) Stop the flow: a paradigm for cell signaling mediated by reactive oxygen species in the pulmonary endothelium. Annu Rev Physiol 74:403–424PubMedCrossRefGoogle Scholar
  8. Bruce MC, Honaker CE, Cross RJ (1999) Lung fibroblasts undergo apoptosis following alveolarization. Am J Respir Cell Mol Biol 20:228–236PubMedCrossRefGoogle Scholar
  9. Burri PH (2006) Structural aspects of postnatal lung development - alveolar formation and growth. Biol Neonate 89:313–322PubMedCrossRefGoogle Scholar
  10. Burri PH, Sehovic S (1979) The adaptive response of the rat lung after bilobectomy. Am Rev Respir Dis 119:769–777PubMedGoogle Scholar
  11. Burri PH, Weibel ER (1971) Morphometric estimation of pulmonary diffusion capacity. II. Effect of PO2 on the growing lung, adaption of the growing rat lung to hypoxia and hyperoxia. Respir Physiol 11:247–264PubMedCrossRefGoogle Scholar
  12. Burrows B, Harrison RW, Adams WE, Humphreys EM, Long ET (1960) The postpneumonectomy state. Clinical and physiologic observations in thirty-six cases. Am J Med 28:281–297PubMedCrossRefGoogle Scholar
  13. Butler JP, Loring SH, Patz S, Tsuda A, Yablonskiy DA, Mentzer SJ (2012) Evidence for adult lung growth in humans. N Engl J Med 367:244–247PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cabrera-Benitez NE, Parotto M, Post M, Han B, Spieth PM, Cheng WE, Valladares F, Villar J, Liu M, Sato M, Zhang H, Slutsky AS (2012) Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition. Crit Care Med 40:510–517PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cagle PT, Thurlbeck WM (1988) Postpneumonectomy compensatory lung growth. Am Rev Respir Dis 138:1314–1326PubMedCrossRefGoogle Scholar
  16. Carlin JI, Hsia CC, Cassidy SS, Ramanathan M, Clifford PS, Johnson RL Jr (1991) Recruitment of lung diffusing capacity with exercise before and after pneumonectomy in dogs. J Appl Physiol 70:135–142PubMedCrossRefGoogle Scholar
  17. Chailley-Heu B, Boucherat O, Barlier-Mur AM, Bourbon JR (2005) FGF-18 is upregulated in the postnatal rat lung and enhances elastogenesis in myofibroblasts. Am J Physiol Lung Cell Mol Physiol 288:L43–L51PubMedCrossRefGoogle Scholar
  18. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275:25130–25138PubMedCrossRefGoogle Scholar
  19. Chang H, Shyu KG, Wang BW, Kuan P (2003) Regulation of hypoxia-inducible factor-1alpha by cyclical mechanical stretch in rat vascular smooth muscle cells. Clin Sci (Lond) 105:447–456CrossRefGoogle Scholar
  20. Chatterjee S, Chapman KE, Fisher AB (2008) Lung ischemia: a model for endothelial mechanotransduction. Cell Biochem Biophys 52:125–138PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen JC, Cai HY, Wang Y, Ma YY, Song LN, Yin LJ, Cao DM, Diao F, Li YD, Lu J (2013) Up-regulation of stomatin expression by hypoxia and glucocorticoid stabilizes membrane-associated actin in alveolar epithelial cells. J Cell Mol Med 17:863–872PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen L, Acciani T, Le Cras T, Lutzko C, Perl AK (2012) Dynamic regulation of platelet-derived growth factor receptor alpha expression in alveolar fibroblasts during realveolarization. Am J Respir Cell Mol Biol 47:517–527PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chun YS, Kim MS, Park JW (2002) Oxygen-dependent and -independent regulation of HIF-1alpha. J Korean Med Sci 17:581–588PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ciric I, Meyers MP, Mayba J, Anthonisen NR (2003) Autopneumonectomy with compensatory lung growth. Can Respir J 10:271–273PubMedCrossRefGoogle Scholar
  25. Dane DM, Yan X, Tamhane RM, Johnson RL Jr, Estrera AS, Hogg DC, Hogg RT, Hsia CCW (2004) Retinoic acid-induced alveolar cellular growth does not improve function after right pneumonectomy. J Appl Physiol 96:1090–1096PubMedCrossRefGoogle Scholar
  26. Dane DM, Yilmaz C, Estrera AS, Hsia CC (2013) Separating in vivo mechanical stimuli for postpneumonectomy compensation: physiological assessment. J Appl Physiol (1985) 114:99–106CrossRefGoogle Scholar
  27. Dane DM, Yilmaz C, Gyawali D, Iyer R, Ravikumar P, Estrera AS, Hsia CC (2016) Perfusion-related stimuli for compensatory lung growth following pneumonectomy. J Appl Physiol (1985) 121:312–323CrossRefGoogle Scholar
  28. Davies P, McBride J, Murray GF, Wilcox BR, Shallal JA, Reid L (1982) Structural changes in the canine lung and pulmonary arteries after pneumonectomy. J Appl Physiol 53:859–864PubMedGoogle Scholar
  29. Dawson AB (1934) Additional evidence of the failure of epiphyseal union in the skeleton of the rat. Studies on wild and captive Norway rats. Anat Rec 60:501–511CrossRefGoogle Scholar
  30. DeGroodt EG, van Pelt W, Borsboom GJ, Quanjer PH, van Zomeren BC (1988) Growth of lung and thorax dimensions during the pubertal growth spurt. Eur Respir J 1:102–108PubMedGoogle Scholar
  31. Djonov V, Baum O, Burri PH (2003) Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 314:107–117PubMedCrossRefGoogle Scholar
  32. Doerschuk CM, Sekhon HS (1990) Pulmonary blood volume and edema in postpneumonectomy lung growth in rats. J Appl Physiol (1985) 69:1178–1182Google Scholar
  33. El Agha E, Herold S, Al Alam D, Quantius J, MacKenzie B, Carraro G, Moiseenko A, Chao CM, Minoo P, Seeger W, Bellusci S (2014) Fgf10-positive cells represent a progenitor cell population during lung development and postnatally. Development 141:296–306PubMedPubMedCentralCrossRefGoogle Scholar
  34. Foster DJ, Moe OW, Hsia CC (2004) Upregulation of erythropoietin receptor during postnatal and postpneumonectomy lung growth. Am J Physiol Lung Cell Mol Physiol 287:L1107–L1115PubMedCrossRefGoogle Scholar
  35. Foster DJ, Yan X, Bellotto DJ, Moe OW, Hagler HK, Estrera AS, Hsia CCW (2002) Expression of epidermal growth factor and surfactant proteins during postnatal and compensatory lung growth. Am J Physiol Lung Cell Mol Physiol 283:L981–L990PubMedCrossRefGoogle Scholar
  36. Gabbrielli S, Di Lollo S, Stanflin N, Romagnoli P (1994) Myofibroblast and elastic and collagen fiber hyperplasia in the bronchial mucosa: a possible basis for the progressive irreversibility of airway obstruction in chronic asthma. Pathologica 86:157–160PubMedGoogle Scholar
  37. Ghaedi M, Calle EA, Mendez JJ, Gard AL, Balestrini J, Booth A, Bove PF, Gui L, White ES, Niklason LE (2013) Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest 123:4950–4962PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gharaee-Kermani M, Hu B, Phan SH, Gyetko MR (2009) Recent advances in molecular targets and treatment of idiopathic pulmonary fibrosis: focus on TGFbeta signaling and the myofibroblast. Curr Med Chem 16:1400–1417PubMedCrossRefGoogle Scholar
  39. Gilbert KA, Rannels DE (1998) Increased lung inflation induces gene expression after pneumonectomy. Am J Physiol 275:L21–L29PubMedGoogle Scholar
  40. Grushka JR, Al-Abbad S, Baird R, Puligandla P, Kaplan F, Laberge JM (2010) The effect of in vitro tracheal occlusion on branching morphogenesis in fetal lung explants from the rat nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 45:943–947PubMedCrossRefGoogle Scholar
  41. Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819PubMedCrossRefGoogle Scholar
  42. Harding R, Hooper SB (1996) Regulation of lung expansion and lung growth before birth. J Appl Physiol (1985) 81:209–224Google Scholar
  43. Harding R, Hooper SB, Han VK (1993) Abolition of fetal breathing movements by spinal cord transection leads to reductions in fetal lung liquid volume, lung growth, and IGF-II gene expression. Pediatr Res 34:148–153PubMedCrossRefGoogle Scholar
  44. Hasaneen NA, Zucker S, Cao J, Chiarelli C, Panettieri RA, Foda HD (2005) Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs. FASEB J 19:1507–1509PubMedGoogle Scholar
  45. Hasaneen NA, Zucker S, Lin RZ, Vaday GG, Panettieri RA, Foda HD (2007) Angiogenesis is induced by airway smooth muscle strain. Am J Physiol Lung Cell Mol Physiol 293:L1059–L1068PubMedCrossRefGoogle Scholar
  46. Heil M, Eitenmuller I, Schmitz-Rixen T, Schaper W (2006) Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 10:45–55PubMedCrossRefGoogle Scholar
  47. Herazo LF, Hsia CCW, Ramanathan M, Johnson RL Jr (1992) Recruitment of pulmonary membrane diffusing capacity and capillary blood volume during exercise after right pneumonectomy in dogs. (Abstract). FASEB J 6:A1512Google Scholar
  48. Hijazi OM, Ramanathan M, Estrera AS, Peshock RM, Hsia CCW (1998) Fixed maximal stroke index in patients after pneumonectomy. Am J Respir Crit Care Med 157:1623–1629PubMedCrossRefGoogle Scholar
  49. Hinz B (2012) Mechanical aspects of lung fibrosis: a spotlight on the myofibroblast. Proc Am Thorac Soc 9:137–147PubMedCrossRefGoogle Scholar
  50. Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CC, Niklason L, Calle E, Le A, Randell SH, Rock J, Snitow M, Krummel M, Stripp BR, Vu T, White ES, Whitsett JA, Morrisey EE (2014) Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15:123–138PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hogg JC, Coxson HO, Brumwell ML, Beyers N, Doerschuk CM, MacNee W, Wiggs BR (1994) Erythrocyte and polymorphonuclear cell transit time and concentration in human pulmonary capillaries. J Appl Physiol (1985) 77:1795–1800Google Scholar
  52. Howell K, Preston RJ, McLoughlin P (2003) Chronic hypoxia causes angiogenesis in addition to remodelling in the adult rat pulmonary circulation. J Physiol 547:133–145PubMedCrossRefGoogle Scholar
  53. Hsia CC (2004a) Lessons from a canine model of compensatory lung growth. Curr Top Dev Biol 64:17–32PubMedCrossRefGoogle Scholar
  54. Hsia CC (2004b) Signals and mechanisms of compensatory lung growth. J Appl Physiol 97:1992–1998PubMedCrossRefGoogle Scholar
  55. Hsia CC, Dane DM, Estrera AS, Wagner HE, Wagner PD, Johnson RL Jr (2008) Shifting sources of functional limitation following extensive (70%) lung resection. J Appl Physiol 104:1069–1079PubMedCrossRefGoogle Scholar
  56. Hsia CC, Fryder-Doffey F, Stalder-Nayarro V, Johnson RL Jr, Reynolds RC, Weibel ER (1993a) Structural changes underlying compensatory increase of diffusing capacity after left pneumonectomy in adult dogs. J Clin Invest 92:758–764PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hsia CC, Herazo LF, Ramanathan M, Johnson RL Jr (1994a) Cardiopulmonary adaptations to pneumonectomy in dogs. IV. Membrane diffusing capacity and capillary blood volume. J Appl Physiol (1985) 77:998–1005Google Scholar
  58. Hsia CC, Herazo LF, Ramanathan M, Johnson RL Jr, Wagner PD (1993b) Cardiopulmonary adaptations to pneumonectomy in dogs. II. VA/Q relationships and microvascular recruitment. J Appl Physiol 74:1299–1309PubMedGoogle Scholar
  59. Hsia CC, Hyde DM, Weibel ER (2016) Lung structure and the intrinsic challenges of gas exchange. Compr Physiol 6:827–895PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hsia CC, Johnson RL Jr (2006) Further examination of alveolar septal adaptation to left pneumonectomy in the adult lung. Respir Physiol Neurobiol 151:167–177PubMedCrossRefGoogle Scholar
  61. Hsia CC, Johnson RL Jr, Wu EY, Estrera AS, Wagner H, Wagner PD (2003) Reducing lung strain after pneumonectomy impairs oxygen diffusing capacity but not ventilation-perfusion matching. J Appl Physiol 95:1370–1378PubMedCrossRefGoogle Scholar
  62. Hsia CC, Ramanathan M, Estrera AS (1992) Recruitment of diffusing capacity with exercise in patients after pneumonectomy. Am Rev Respir Dis 145:811–816PubMedCrossRefGoogle Scholar
  63. Hsia CC, Ravikumar P (2015) Role of mechanical stress in lung repair and regeneration. In: Bertoncello I (ed) Stem cells in the lung. Stem cell biology and regenerative medicine. Springer, Switzerland, pp 191–212Google Scholar
  64. Hsia CC, Wu EY, Wagner E, Weibel ER (2001) Preventing mediastinal shift after pneumonectomy impairs regenerative alveolar tissue growth. Am J Physiol Lung Cell Mol Physiol 281:L1279–L1287PubMedGoogle Scholar
  65. Hsia CCW, Berberich MA, Driscoll B, Laubach VE, Lillehei CW, Massaro DJ, Perkett EA, Pierce RA, Rannels DE, Ryan RM, Tepper RS, Townsley MI, Veness-Meehan K, Wang N, Warburton D (2004) Mechanisms and limits of induced postnatal lung growth. Am J Respir Crit Care Med 170:319–343CrossRefGoogle Scholar
  66. Hsia CCW, Carlin JI, Ramanathan M, Cassidy SS, Johnson RL Jr (1991) Estimation of diffusion limitation after pneumonectomy from carbon monoxide diffusing capacity. Respir Physiol 83:11–21PubMedCrossRefGoogle Scholar
  67. Hsia CCW, Carlin JI, Wagner PD, Cassidy SS, Johnson RL Jr (1990) Gas exchange abnormalities after pneumonectomy in conditioned foxhounds. J Appl Physiol 68:94–104PubMedGoogle Scholar
  68. Hsia CCW, Herazo LF, Fryder-Doffey F, Weibel ER (1994b) Compensatory lung growth occurs in adult dogs after right pneumonectomy. J Clin Invest 94:405–412PubMedPubMedCentralCrossRefGoogle Scholar
  69. Hsia CCW, Polo Carbayo JJ, Yan X, Bellotto DJ (2005) Enhanced alveolar growth and remodeling in guinea pigs raised at high altitude. Respir Physiol Neurobiol 147:105–115PubMedCrossRefGoogle Scholar
  70. Hsia CCW, Yilmaz C, Weibel ER (2015) Stretch and grow: mechanical forces in compensatory lung growth. In: Harding R, Pinkerton KE (eds) The lung. Development, aging and the environment. Academic, London, pp 233–250Google Scholar
  71. Hsia CCW, Zhou XS, Bellotto DJ, Hagler HK (2000) Regenerative growth of respiratory bronchioles in dogs. Am J Physiol Lung Cell Mol Physiol 279:L136–L142PubMedGoogle Scholar
  72. Huang SX, Islam MN, O’Neill J, Hu Z, Yang YG, Chen YW, Mumau M, Green MD, Vunjak-Novakovic G, Bhattacharya J, Snoeck HW (2014) Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol 32:84–91PubMedCrossRefGoogle Scholar
  73. Ijsselstijn H, Tibboel D, Hop WJ, Molenaar JC, de Jongste JC (1997) Long-term pulmonary sequelae in children with congenital diaphragmatic hernia. Am J Respir Crit Care Med 155:174–180PubMedCrossRefGoogle Scholar
  74. Jesudason EC, Smith NP, Connell MG, Spiller DG, White MR, Fernig DG, Losty PD (2006) Peristalsis of airway smooth muscle is developmentally regulated and uncoupled from hypoplastic lung growth. Am J Physiol Lung Cell Mol Physiol 291:L559–L565PubMedCrossRefGoogle Scholar
  75. John TA (2010) Effect of chronic high altitude hypoxia on foetal and maternal juxta-alveolar distal pulmonary smooth muscle cells actin and calponin organisation and growth profiles. West Afr J Med 29:388–392PubMedGoogle Scholar
  76. Jung F, Palmer LA, Zhou N, Johns RA (2000) Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ Res 86:319–325PubMedCrossRefGoogle Scholar
  77. Kadzik RS, Cohen ED, Morley MP, Stewart KM, Lu MM, Morrisey EE (2014) Wnt ligand/Frizzled 2 receptor signaling regulates tube shape and branch-point formation in the lung through control of epithelial cell shape. Proc Natl Acad Sci U S A 111:12444–12449PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kawai N, Bloch DB, Filippov G, Rabkina D, Suen HC, Losty PD, Janssens SP, Zapol WM, de la Monte S, Bloch KD (1995) Constitutive endothelial nitric oxide synthase gene expression is regulated during lung development. Am J Physiol 268:L589–L595PubMedGoogle Scholar
  79. Kaza AK, Kron IL, Kern JA, Long SM, Fiser SM, Nguyen RP, Tribble CG, Laubach VE (2001) Retinoic acid enhances lung growth after pneumonectomy. Ann Thorac Surg 71:1645–1650PubMedCrossRefGoogle Scholar
  80. Kaza AK, Kron IL, Leuwerke SM, Tribble CG, Laubach VE (2002) Keratinocyte growth factor enhances post-pneumonectomy lung growth by alveolar proliferation. Circulation 106:I120–I124PubMedGoogle Scholar
  81. Kaza AK, Laubach VE, Kern JA, Long SM, Fiser SM, Tepper JA, Nguyen RP, Shockey KS, Tribble CG, Kron IL (2000) Epidermal growth factor augments postpneumonectomy lung growth. J Thorac Cardiovasc Surg 120:916–921PubMedCrossRefGoogle Scholar
  82. Kho AT, Liu K, Visner G, Martin T, Boudreault F (2013) Identification of dedifferentiation and redevelopment phases during postpneumonectomy lung growth. Am J Physiol Lung Cell Mol Physiol 305:L542–L554PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kim CH, Cho YS, Chun YS, Park JW, Kim MS (2002) Early expression of myocardial HIF-1alpha in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signaling pathway. Circ Res 90:E25–E33PubMedCrossRefGoogle Scholar
  84. Kim N, Vu TH (2006) Parabronchial smooth muscle cells and alveolar myofibroblasts in lung development. Birth Defects Res C 78:80–89CrossRefGoogle Scholar
  85. Kirchner KK, McBride JT (1990) Changes in airway length after unilateral pneumonectomy in weanling ferrets. J Appl Physiol 68:187–192PubMedGoogle Scholar
  86. Koetzler R, Saifeddine M, Yu Z, Schurch FS, Hollenberg MD, Green FH (2006) Surfactant as an airway smooth muscle relaxant. Am J Respir Cell Mol Biol 34:609–615PubMedCrossRefGoogle Scholar
  87. Langston C, Sachdeva P, Cowan MJ, Haines J, Crystal RG, Thurlbeck WM (1977) Alveolar multiplication in the contralateral lung after unilateral pneumonectomy in the rabbit. Am Rev Respir Dis 115:7–13PubMedGoogle Scholar
  88. Laros CD, Westermann CJJ (1987) Dilatation, compensatory growth, or both after pneumonectomy during childhood and adolescence. A thirty-year follow-up study. J Thorac Cardiovasc Surg 93:570–576PubMedGoogle Scholar
  89. Leuwerke SM, Kaza AK, Tribble CG, Kron IL, Laubach VE (2002) Inhibition of compensatory lung growth in endothelial nitric oxide synthase-deficient mice. Am J Physiol Lung Cell Mol Physiol 282:L1272–L1278PubMedCrossRefGoogle Scholar
  90. Li C, Mpollo MS, Gonsalves CS, Tahara SM, Malik P, Kalra VK (2014) Peroxisome proliferator-activated receptor-alpha-mediated transcription of miR-199a2 attenuates endothelin-1 expression via hypoxia-inducible factor-1alpha. J Biol Chem 289:36031–36047PubMedPubMedCentralCrossRefGoogle Scholar
  91. Li H, Yuan X, Tang J, Zhang Y (2012) Lipopolysaccharide disrupts the directional persistence of alveolar myofibroblast migration through EGF receptor. Am J Physiol Lung Cell Mol Physiol 302:L569–L579PubMedCrossRefGoogle Scholar
  92. Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao Y, Jean JC, Kwok LW, Mou H, Rajagopal J, Shen SS, Dowton AA, Serra M, Weiss DJ, Green MD, Snoeck HW, Ramirez MI, Kotton DN (2012) Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 10:398–411PubMedPubMedCentralCrossRefGoogle Scholar
  93. Maeda Y, Dave V, Whitsett JA (2007) Transcriptional control of lung morphogenesis. Physiol Rev 87:219–244PubMedCrossRefGoogle Scholar
  94. Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New YorkGoogle Scholar
  95. Marti HH (2005) Angiogenesis--a self-adapting principle in hypoxia. EXS 94:163–180Google Scholar
  96. Marti HH, Risau W (1998) Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci U S A 95:15809–15814PubMedPubMedCentralCrossRefGoogle Scholar
  97. Marven SS, Smith CM, Claxton D, Chapman J, Davies HA, Primhak RA, Powell CV (1998) Pulmonary function, exercise performance, and growth in survivors of congenital diaphragmatic hernia. Arch Dis Child 78:137–142PubMedPubMedCentralCrossRefGoogle Scholar
  98. Massaro GD, Massaro D (1997) Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats [published erratum appears in Nat Med 1997 Jul;3(7):805]. Nat Med 3:675–677PubMedCrossRefGoogle Scholar
  99. McBride JT (1985) Postpneumonectomy airway growth in the ferret. J Appl Physiol 58:1010–1014PubMedGoogle Scholar
  100. McBride JT, Wohl ME, Strieder DJ, Jackson AC, Morton JR, Zwerdling RG, Griscom NT, Treves S, Williams AJ, Schuster S (1980) Lung growth and airway function after lobectomy in infancy for congenital lobar emphysema. J Clin Invest 66:962–970PubMedPubMedCentralCrossRefGoogle Scholar
  101. McGowan SE, McCoy DM (2014) Regulation of fibroblast lipid storage and myofibroblast phenotypes during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol 307:L618–L631PubMedPubMedCentralCrossRefGoogle Scholar
  102. Moon EY, Im YS, Ryu YK, Kang JH (2010) Actin-sequestering protein, thymosin beta-4, is a novel hypoxia responsive regulator. Clin Exp Metastasis 27:601–609PubMedCrossRefGoogle Scholar
  103. Nolen-Walston RD, Kim CF, Mazan MR, Ingenito EP, Gruntman AM, Tsai L, Boston R, Woolfenden AE, Jacks T, Hoffman AM (2008) Cellular kinetics and modeling of bronchioalveolar stem cell response during lung regeneration. Am J Physiol Lung Cell Mol Physiol 294:L1158–L1165PubMedPubMedCentralCrossRefGoogle Scholar
  104. Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M, Wahlers T, Richter J, Gundersen HJ (2004) The number of alveoli in the human lung. Am J Respir Crit Care Med 169:120–124PubMedCrossRefGoogle Scholar
  105. Okada O, Presson RG Jr, Kirk KR, Godbey PS, Capen RL, Wagner WW Jr (1992) Capillary perfusion patterns in single alveolar walls. J Appl Physiol (1985) 72:1838–1844Google Scholar
  106. Oldmixon EH, Butler JP, Hoppin FG Jr (1988) Dihedral angles between alveolar septa. J Appl Physiol 64:299–307PubMedGoogle Scholar
  107. Oldmixon EH, Butler JP, Hoppin FG Jr (1989) Lengths and topology of alveolar septal borders. J Appl Physiol 67:1930–1940PubMedGoogle Scholar
  108. Oldmixon EH, Carlsson K, Kuhn C 3rd, Butler JP, Hoppin FG Jr (2001) alpha-Actin: disposition, quantities, and estimated effects on lung recoil and compliance. J Appl Physiol (1985) 91:459–473Google Scholar
  109. Paxson JA, Gruntman AM, Davis AM, Parkin CM, Ingenito EP, Hoffman AM (2013) Age dependence of lung mesenchymal stromal cell dynamics following pneumonectomy. Stem Cells Dev 22:3214–3225PubMedPubMedCentralCrossRefGoogle Scholar
  110. Paxson JA, Parkin CD, Iyer LK, Mazan MR, Ingenito EP, Hoffman AM (2009) Global gene expression patterns in the post-pneumonectomy lung of adult mice. Respir Res 10:92PubMedPubMedCentralCrossRefGoogle Scholar
  111. Perl AK, Gale E (2009) FGF signaling is required for myofibroblast differentiation during alveolar regeneration. Am J Physiol Lung Cell Mol Physiol 297:L299–L308PubMedPubMedCentralCrossRefGoogle Scholar
  112. Probyn ME, Wallace MJ, Hooper SB (2000) Effect of increased lung expansion on lung growth and development near midgestation in fetal sheep. Pediatr Res 47:806–812PubMedCrossRefGoogle Scholar
  113. Rannels DE, Stockstill B, Mercer RR, Crapo JD (1991) Cellular changes in the lungs of adrenalectomized rats following left pneumonectomy. Am J Respir Cell Mol Biol 5:351–362PubMedCrossRefGoogle Scholar
  114. Ravikumar P, Bellotto DJ, Hsia CC (2015) Persistent structural adaptation in the lungs of guinea pigs raised at high altitude. Respir Physiol Neurobiol 208:37–44PubMedCrossRefGoogle Scholar
  115. Ravikumar P, Dane DM, McDonough P, Yilmaz C, Estrera AS, Hsia CC (2011) Long-term post-pneumonectomy pulmonary adaptation following all-trans-retinoic acid supplementation. J Appl Physiol 110:764–773PubMedCrossRefGoogle Scholar
  116. Ravikumar P, Yilmaz C, Bellotto DJ, Dane DM, Estrera AS, Hsia CC (2013) Separating in vivo mechanical stimuli for postpneumonectomy compensation: imaging and ultrastructural assessment. J Appl Physiol (1985) 114:961–970CrossRefGoogle Scholar
  117. Ravikumar P, Yilmaz C, Dane DM, Bellotto DJ, Estrera AS, Hsia CC (2014) Defining a stimuli-response relationship in compensatory lung growth following major resection. J Appl Physiol (1985) 116:816–824CrossRefGoogle Scholar
  118. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674PubMedCrossRefGoogle Scholar
  119. Roberts AM, Slaaf DW, Joshua IG (1998) Potentiation of pulmonary arteriolar vasoconstriction to endothelin-1 by inhibition of nitric oxide synthesis in the intact lung. Microcirculation 5:289–298PubMedCrossRefGoogle Scholar
  120. Sakurai MK, Lee S, Arsenault DA, Nose V, Wilson JM, Heymach JV, Puder M (2007) Vascular endothelial growth factor accelerates compensatory lung growth after unilateral pneumonectomy. Am J Physiol Lung Cell Mol Physiol 292:L742–L747PubMedCrossRefGoogle Scholar
  121. Schittny JC, Miserocchi G, Sparrow MP (2000) Spontaneous peristaltic airway contractions propel lung liquid through the bronchial tree of intact and fetal lung explants. Am J Respir Cell Mol Biol 23:11–18PubMedCrossRefGoogle Scholar
  122. Sekhon HS, Smith C, Thurlbeck WM (1993) Effect of hypoxia and hyperoxia on postpneumonectomy compensatory lung growth. Exp Lung Res 19:519–532PubMedCrossRefGoogle Scholar
  123. Sekhon HS, Thurlbeck WM (1992) A comparative study of postpneumonectomy compensatory lung response in growing male and female rats. J Appl Physiol 73:446–451PubMedGoogle Scholar
  124. Shu W, Guttentag S, Wang Z, Andl T, Ballard P, Lu MM, Piccolo S, Birchmeier W, Whitsett JA, Millar SE, Morrisey EE (2005) Wnt/beta-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal-distal patterning in the lung. Dev Biol 283:226–239PubMedCrossRefGoogle Scholar
  125. Simon G, Reid L, Tanner JM, Goldstein H, Benjamin B (1972) Growth of radiologically determined heart diameter, lung width, and lung length from 5–19 years, with standards for clinical use. Arch Dis Child 47:373–381PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sparrow MP, Lamb JP (2003) Ontogeny of airway smooth muscle: structure, innervation, myogenesis and function in the fetal lung. Respir Physiol Neurobiol 137:361–372PubMedCrossRefGoogle Scholar
  127. Takeda S, Hsia CC, Wagner E, Ramanathan M, Estrera AS, Weibel ER (1999a) Compensatory alveolar growth normalizes gas-exchange function in immature dogs after pneumonectomy. J Appl Physiol (1985) 86:1301–1310Google Scholar
  128. Takeda S, Ramanathan M, Estrera AS, Hsia CCW (1999b) Postpneumonectomy alveolar growth does not normalize hemodynamic and mechanical function. J Appl Physiol 87:491–497PubMedGoogle Scholar
  129. Takeda S, Wu EY, Epstein RH, Estrera AS, Hsia CC (1997) In vivo assessment of changes in air and tissue volumes after pneumonectomy. J Appl Physiol (1985) 82:1340–1348Google Scholar
  130. Takeda S, Wu EY, Ramanathan M, Estrera AS, Hsia CC (1996). Temporal course of gas exchange and mechanical compensation after right pneumonectomy in immature dogs. J Appl Physiol (1985) 80:1304–12Google Scholar
  131. Tanner JM, Whitehouse RH, Takaishi M (1966a) Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965. I. Arch Dis Child 41:454–471PubMedPubMedCentralCrossRefGoogle Scholar
  132. Tanner JM, Whitehouse RH, Takaishi M (1966b) Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965. II. Arch Dis Child 41:613–635PubMedPubMedCentralCrossRefGoogle Scholar
  133. Tepper J, Pfeiffer J, Aldrich M, Tumas D, Kern J, Hoffman E, McLennan G, Hyde D (2000) Can retinoic acid ameliorate the physiologic and morphologic effects of elastase instillation in the rat? Chest 117:242S–244SPubMedCrossRefGoogle Scholar
  134. Thet LA, Law DJ (1984) Changes in cell number and lung morphology during early postpneumonectomy lung growth. J Appl Physiol 56:975–978PubMedGoogle Scholar
  135. Thurlbeck WM, Langston C (1989) Long-term consequences of compensatory lung growth. J Appl Physiol 66:2891–2894PubMedGoogle Scholar
  136. Tian J, Fratz S, Hou Y, Lu Q, Gorlach A, Hess J, Schreiber C, Datar SA, Oishi P, Nechtman J, Podolsky R, She JX, Fineman JR, Black SM (2011) Delineating the angiogenic gene expression profile before pulmonary vascular remodeling in a lamb model of congenital heart disease. Physiol Genomics 43:87–98PubMedCrossRefGoogle Scholar
  137. Tollet J, Everett AW, Sparrow MP (2001) Spatial and temporal distribution of nerves, ganglia, and smooth muscle during the early pseudoglandular stage of fetal mouse lung development. Dev Dyn 221:48–60PubMedCrossRefGoogle Scholar
  138. Turing AM (1990) The chemical basis of morphogenesis. 1953. Bull Math Biol 52:153–197, discussion 119–152PubMedCrossRefGoogle Scholar
  139. Unbekandt M, del Moral PM, Sala FG, Bellusci S, Warburton D, Fleury V (2008) Tracheal occlusion increases the rate of epithelial branching of embryonic mouse lung via the FGF10-FGFR2b-Sprouty2 pathway. Mech Dev 125:314–324PubMedCrossRefGoogle Scholar
  140. Voswinckel R, Ziegelhoeffer T, Heil M, Kostin S, Breier G, Mehling T, Haberberger R, Clauss M, Gaumann A, Schaper W, Seeger W (2003) Circulating vascular progenitor cells do not contribute to compensatory lung growth. Circ Res 93:372–379PubMedCrossRefGoogle Scholar
  141. Waller DA, Keavey P, Woodfine L, Dark JH (1996) Pulmonary endothelial permeability changes after major lung resection. Ann Thorac Surg 61:1435–1440PubMedCrossRefGoogle Scholar
  142. Wang N, Naruse K, Stamenovic D, Fredberg JJ, Mijailovich SM, Tolic-Norrelykke IM, Polte T, Mannix R, Ingber DE (2001) Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci U S A 98:7765–7770PubMedPubMedCentralCrossRefGoogle Scholar
  143. Warren GL, Cureton KJ, Middendorf WF, Ray CA, Warren JA (1991) Red blood cell pulmonary capillary transit time during exercise in athletes. Med Sci Sports Exerc 23:1353–1361PubMedCrossRefGoogle Scholar
  144. Weaver M, Yingling JM, Dunn NR, Bellusci S, Hogan BL (1999) Bmp signaling regulates proximal-distal differentiation of endoderm in mouse lung development. Development 126:4005–4015PubMedGoogle Scholar
  145. Weibel ER (1991) Fractal geometry: a design principle for living organisms. Am J Physiol 261:L361–L369PubMedGoogle Scholar
  146. Weibel ER (2009) What makes a good lung? Swiss Med Wkly 139:375–386PubMedGoogle Scholar
  147. Wirtz HR, Dobbs LG (2000) The effects of mechanical forces on lung functions. Respir Physiol 119:1–17PubMedCrossRefGoogle Scholar
  148. Wolff JC, Wilhelm J, Fink L, Seeger W, Voswinckel R (2010) Comparative gene expression profiling of post-natal and post-pneumonectomy lung growth. Eur Respir J 35:655–666PubMedCrossRefGoogle Scholar
  149. Wong AP, Bear CE, Chin S, Pasceri P, Thompson TO, Huan LJ, Ratjen F, Ellis J, Rossant J (2012) Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat Biotechnol 30:876–882PubMedPubMedCentralCrossRefGoogle Scholar
  150. Wood JP, Kolassa JE, McBride JT (1998) Changes in alveolar septal border lengths with postnatal lung growth. Am J Physiol 275:L1157–L1163PubMedGoogle Scholar
  151. Wu EY, Hsia CC, Estrera AS, Epstein RH, Ramanathan M, Johnson RL Jr (2000) Preventing mediastinal shift after pneumonectomy does not abolish physiological compensation. J Appl Physiol (1985) 89:182–191Google Scholar
  152. Yan X, Bellotto DJ, Dane DM, Elmore RG, Johnson RL Jr, Estrera AS, Hsia CC (2005) Lack of response to all-trans retinoic acid supplementation in adult dogs following left pneumonectomy. J Appl Physiol 99:1681–1688PubMedCrossRefGoogle Scholar
  153. Yan X, Bellotto DJ, Foster DJ, Johnson RL Jr, Hagler HH, Estrera AS, Hsia CC (2004) Retinoic acid induces nonuniform alveolar septal growth after right pneumonectomy. J Appl Physiol 96:1080–1089PubMedCrossRefGoogle Scholar
  154. Yi L, Domyan ET, Lewandoski M, Sun X (2009) Fibroblast growth factor 9 signaling inhibits airway smooth muscle differentiation in mouse lung. Dev Dyn 238:123–137PubMedPubMedCentralCrossRefGoogle Scholar
  155. Yilmaz C, Ravikumar P, Dane DM, Bellotto DJ, Johnson RL Jr, Hsia CC (2009) Noninvasive quantification of heterogeneous lung growth following extensive lung resection by high-resolution computed tomography. J Appl Physiol 107:1569–1578PubMedPubMedCentralCrossRefGoogle Scholar
  156. Yilmaz C, Tustison NJ, Dane DM, Ravikumar P, Takahashi M, Gee JC, Hsia CC (2011) Progressive adaptation in regional parenchyma mechanics following extensive lung resection assessed by functional computed tomography. J Appl Physiol 111:1150–1158PubMedPubMedCentralCrossRefGoogle Scholar
  157. Yuan S, Hannam V, Belcastro R, Cartel N, Cabacungan J, Wang J, Diambomba Y, Johnstone L, Post M, Tanswell AK (2002) A role for platelet-derived growth factor-BB in rat postpneumonectomy compensatory lung growth. Pediatr Res 52:25–33PubMedCrossRefGoogle Scholar
  158. Zamudio S (2003) The placenta at high altitude. High Alt Med Biol 4:171–191PubMedCrossRefGoogle Scholar
  159. Zhang Q, Bellotto DJ, Ravikumar P, Moe OW, Hogg RT, Hogg DC, Estrera AS, Johnson RL Jr, Hsia CC (2007) Postpneumonectomy lung expansion elicits hypoxia-inducible factor-1alpha signaling. Am J Physiol Lung Cell Mol Physiol 293:L497–L504PubMedCrossRefGoogle Scholar
  160. Zhang Q, Moe OW, Garcia JA, Hsia CC (2006) Regulated expression of hypoxia-inducible factors during postnatal and postpneumonectomy lung growth. Am J Physiol Lung Cell Mol Physiol 290:L880–L889PubMedCrossRefGoogle Scholar
  161. Zhang Q, Zhang J, Moe OW, Hsia CC (2008) Synergistic upregulation of erythropoietin receptor (EPO-R) expression by sense and antisense EPO-R transcripts in the canine lung. Proc Natl Acad Sci U S A 105:7612–7617PubMedPubMedCentralCrossRefGoogle Scholar
  162. Zhang R, Pan Y, Fanelli V, Wu S, Luo AA, Islam D, Han B, Mao P, Ghazarian M, Zeng W, Spieth PM, Wang D, Khang J, Mo H, Liu X, Uhlig S, Liu M, Laffey J, Slutsky AS, Li Y, Zhang H (2015) Mechanical stress and the induction of lung fibrosis via the midkine signaling pathway. Am J Respir Crit Care Med 192:315–323PubMedCrossRefGoogle Scholar
  163. Zhang XL, Yan ZW, Sheng WW, Xiao J, Zhang ZX, Ye ZB (2011) Activation of hypoxia-inducible factor-1 ameliorates postischemic renal injury via inducible nitric oxide synthase. Mol Cell Biochem 358:287–295PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Internal Medicine, Pulmonary and Critical Care MedicineUniversity of Texas Southwestern Medical Center, DallasDallasUSA

Personalised recommendations