Advertisement

Cell and Tissue Research

, Volume 368, Issue 2, pp 311–323 | Cite as

The digestive system of the stony coral Stylophora pistillata

  • M. Raz-Bahat
  • J. Douek
  • E. Moiseeva
  • E. C. Peters
  • B. Rinkevich
Regular Article

Abstract

Because hermatypic species use symbiotic algal photosynthesis, most of the literature in this field focuses on this autotrophic mode and very little research has studied the morphology of the coral’s digestive system or the digestion process of particulate food. Using histology and histochemestry, our research reveals that Stylophora pistillata’s digestive system is concentrated at the corals’ peristome, actinopharynx and mesenterial filaments (MF). We used in-situ hybridization (ISH) of the RNA transcript of the gene that codes for the S. pistillata digestive enzyme, chymotrypsinogen, to shed light on the functionality of the digestive system. Both the histochemistry and the ISH pointed to the MF being specialized digestive organs, equipped with large numbers of acidophilic and basophilic granular gland cells, as well as acidophilic non-granular gland cells, some of which produce chymotrypsinogen. We identified two types of MF: short, trilobed MF and unilobed, long and convoluted MF. Each S. pistillata polyp harbors two long convoluted MF and 10 short MF. While the short MF have neither secreting nor stinging cells, each of the convoluted MF display gradual cytological changes along their longitudinal axis, alternating between stinging and secreting cells and three distinctive types of secretory cells. These observations indicate the important digestive role of the long convoluted MF. They also indicate the existence of novel feeding compartments in the gastric cavity of the polyp, primarily in the nutritionally active peristome, in the actinopharynx and in three regions of the MF that differ from each other in their cellular components, general morphology and chymotrypsinogen excretion.

Keywords

Chymotrypsin Chymotrypsinogen Digestion Mesenterial filaments Stylophora pistillata 

Notes

Acknowledgements

We are grateful to the Hillel Yaffe Hospital Medical School for letting us use their digital photography equipment and to Z. Lapidot, M. Oren and T. Rozentsvig for their assistance during the different stages of the research. We thank G. Paz for his help with the graphic work in this paper. This research was supported by the EC INCO-DEV project (REEFRES-510657) and by the AID-MERC program (no. M33-001).

References

  1. Abe N (1938) Feeding behavior and the nematocyst of Fungia and 15 other species of corals. Palao Trop Biol Sta Stud 1:469–521Google Scholar
  2. Agostini S, Suzuki Y, Higuchi T, Casareto BE, Yoshinaga K, Nakano Y, Fujimura H (2012) Biological and chemical characteristics of the coral gastric cavity. Coral Reefs 31:147–156CrossRefGoogle Scholar
  3. Bancroft JD, Stevens A (1990) Theory and histological techniques, 3rd edn. Churchill Livingstone, Edinburgh, pp 191–196Google Scholar
  4. Beutler R (1924) Experimentelle Untersuchungenüber die Verdauugbei hydra. J Comp Physiol A 1:1–56Google Scholar
  5. Bhattacharya D, Agrawal S, Aranda M, Baumgarten S, Belcaid M, Drake JL, Erwin D, Foret S, Gates RD, Gruber DF, Bishoy Kamel B, Lesser MP, Levy O, Liew YJ, MacManes M, Mass T, Medina M, Mehr S, Meyer E, Price DC, Putnam HM, Qiu H, Shinzato C, Shoguchi E, Stokes AJ, Tambutté S, Tchernov D, Voolstra CR, Wagner N, Walker CW, Weber APM, Weis V, Zelzion E, Zoccola D, Falkowski PG (2016) Comparative genomics explains the evolutionary success of reef-forming corals. eLife 5:e13288PubMedPubMedCentralGoogle Scholar
  6. Boschma H (1925) On the feeding reactions and digestion in the coral polyp Astrangia danae with notes on its symbiosis with zooxanthellae. Biol Bull 49:407–439CrossRefGoogle Scholar
  7. Breitschopf H, Suchanek G, Gould RM, Colman DR, Lassmann H (1992) In situ hybridization with digoxigenin-labeled probes: sensitive and reliable detection method applied to myelinating rat brain. Acta Neuropathol 84:581–587CrossRefPubMedGoogle Scholar
  8. Brusca RC, Brusca GJ (1990) Invertebrates, vol 2. Sinauer Associates, Sunderland, pp 244–246Google Scholar
  9. Bumann D (1995) Localization of digestion activities in the sea anemone Haliplanella luciae. Biol Bull 189:236–237CrossRefPubMedGoogle Scholar
  10. Carpenter FW (1910) Feeding reactions of the rose coral (Isophyllia). Proc Am Acad Arts Sci 46:149–162CrossRefGoogle Scholar
  11. Chadwick NE (1987) Interspecific aggressive behavior of the corallimorpharian Corynactis californica (Cnidaria: Anthozoa): Effects on sympatric corals and sea anemones. Biol Bull 173:110–125CrossRefGoogle Scholar
  12. Chornesky EA (1989) Repeated reversals during spatial competition between corals. Ecology 70:843–855CrossRefGoogle Scholar
  13. Coan MH, Travis J (1970) Comparative biochemistry of proteases from a coelenterate. Comp Biochem Physiol 32:127–139CrossRefPubMedGoogle Scholar
  14. Daly M, Fautin DG, Cappola VA (2003) Systematics of the hexacorallia (Cnidaria: Anthozoa). Zool J Linnean Soc 139:419–437CrossRefGoogle Scholar
  15. Duerden JE (1902) West Indian madreporarian polyps. Mem Nat Acad Sci 8:401–597Google Scholar
  16. Dunn DF (1982) Cnidaria. In: Parker P (ed) Synopsis and classification of living organisms, vol 1. McGraw-Hill, New York, pp 669–706Google Scholar
  17. Fautin DG, Mariscal RN (1991) Cnidaria: Anthozoa. Microsc Anat Invertebr 2:267–358Google Scholar
  18. Galloway SB, Work TM, Bochsler VS, Harley RA, Kramarsky-Winters E, McLaughlin SM, Meteyer CU, Morado JF, Nicholson JH, Parnell PG, Peters EC, Reynolds TL, Rotstein DS, Sileo L, Woodley CM (2007) Coral disease and health workshop: coral histopathology II. NOAA technical memorandum NOS NCCOS56 and NOAA technical memorandum CRCP 4. National Oceanic and Atmospheric Administration, Silver Spring, MD, p 84Google Scholar
  19. Gibson D, Dixson GH (1969) Chymotrypsin-like proteases from the sea anemone Metridium senile. Nature 222:753–756CrossRefPubMedGoogle Scholar
  20. Goldberg WM (2002a) Gastrodermal structure and feeding responses in the scleractinian Mycetophyllia reesi, a coral with novel digestive filaments. Tissue Cell 34:246–261CrossRefPubMedGoogle Scholar
  21. Goldberg WM (2002b) Feeding behavior, epidermal structure and mucus cytochemistry of the scleractinian Mycetophyllia reesi, a coral without tentacles. Tissue Cell 34:232–245CrossRefPubMedGoogle Scholar
  22. Goreau TF (1956) A study of the biology and histochemistry of corals. PhD dissertation, Yale University, New HavenGoogle Scholar
  23. Goreau TF, Goreau NI, Yonge CM (1971) Reef corals: autotrophs or heterotrophs? Biol Bull 141:247–260CrossRefGoogle Scholar
  24. Greenwood M (1888) On digestion in Hydra, with some observations on the structure of the endoderm. J Physiol 9:317–344CrossRefPubMedPubMedCentralGoogle Scholar
  25. Grottoli AG (2002) Effect of light and brine shrimp on skeletal δ13C in the Hawaiian coral Porites compressa: a tank experiment. Geochim Cosmochim Acta 66:1955–1967CrossRefGoogle Scholar
  26. Houlbrèque F, Ferrier-Pagés SC (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17CrossRefPubMedGoogle Scholar
  27. Houlbrèque F, Tambutté E, Allemand D, Ferrier-Pagés SC (2004a) Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Biol 207:1461–1469CrossRefPubMedGoogle Scholar
  28. Houlbrèque F, Tambutté E, Allemand D, Ferrier-Pagés SC (2004b) Importance of a micro-diet for scleractinian corals. Mar Ecol Prog Ser 282:151–160CrossRefGoogle Scholar
  29. Hyman LH (1940) The invertebrates: protozoa through Ctenophora, vol 1. McGraw-Hill, New YorkGoogle Scholar
  30. Jickeli CF (1883) Der Bau der Hydroidpolypen. Morph Jb 8:373–416, 580–680, pls 16–18, 25–28Google Scholar
  31. Krijgsman BJ, Talbot FH (1953) Experiments on digestion in sea anemones. Arch Int Physiol 61:277–291PubMedGoogle Scholar
  32. Krukenberg CFW (1880) Uber den Verdauungsmodus der Aktinien. Vergl Physiol Bd 1:33–56Google Scholar
  33. Lang J (1973) Coral reef project—papers in memory of Dr. Thomas F. Goreau. 11. Interspecific aggression by scleractinian corals. 2. Why the race is not only to the swift. Bull Mar Sci 23:260–279Google Scholar
  34. Lang JC, Chornesky EA (1990) Competition between scleractinian reef corals – a review of mechanisms and effects. Ecosyst World 25:209–252Google Scholar
  35. Logan A (1984) Interspecific aggression in hermatypic corals from Bermuda. Coral Reefs 3:131–138CrossRefGoogle Scholar
  36. Matthai G (1918) On reactions to stimuli in corals. Proc Camb Philos Soc 19:164–166Google Scholar
  37. Metschnikoff E (1880) Über die intracelluläre Verdauungbei Coelenteraten. Zool Anz 3:261–263Google Scholar
  38. Muhlia-Almazán A, Sánchez-Paz A, García-Carreño FL (2008) Invertebrate trypsins: a review. J Comp Physiol B 178:655–672CrossRefPubMedGoogle Scholar
  39. Muscatine L (1973) Nutrition of corals. Biol Geol Coral Reefs 2:77–115CrossRefGoogle Scholar
  40. Nauman MS, Orejas C, Wild C, Ferrier-Pagés C (2011) First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J Exp Biol 214:3570–3576CrossRefGoogle Scholar
  41. Nicol JA (1959) Digestion in sea anemones. J Mar Biol Assoc UK 38:469–476CrossRefGoogle Scholar
  42. Okubo N, Motokawa T (2007) Embryogenesis in the reef-building coral Acropora spp. Zool Sci 24:1169–1177CrossRefPubMedGoogle Scholar
  43. Östman C (2000) A guideline to nematocyst nomenclature and classification, and some notes on the systematic value of nematocysts. Sci Mar 64:31–46CrossRefGoogle Scholar
  44. Palardy JE, Grottoli AG, Matthews KA (2005) Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamian corals. Mar Ecol Prog Ser 300:79–89CrossRefGoogle Scholar
  45. Palardy JE, Grottoli AG, Matthews KA (2006) Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the Eastern Pacific. J Exp Mar Biol Ecol 331:99–107CrossRefGoogle Scholar
  46. Rinkevich B (2004) Allorecognition and xenorecognition in reef corals: adecade of interactions. In: Fautin DG, Westfall JA, Cartwright P, Daly M, Wyttenbach CR (eds) Coelenterate biology. Springer, Dordrecht, pp 443–450Google Scholar
  47. Rinkevich B, Loya Y (1979) The reproduction of theRed Sea coral Stylophora pistillata. 11. Synchronization inbreeding and seasonality of planulae shedding. Mar EcolProg Ser 1:145–152Google Scholar
  48. Rinkevich B, Loya Y (1983) Intraspecific competitive networks in the red sea coral Stylophora pistillata. Coral Reefs 1:161–172CrossRefGoogle Scholar
  49. Schlesinger A, Zlotkin E, Kramarsky-Winter E, Loya Y (2009) Cnidarian internal stinging mechanism. Proc R Soc Lond B 276:1063–1067CrossRefGoogle Scholar
  50. Sebens KP, Vandersall KS, Savina LA, Graham KR (1996) Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. Mar Biol 127:303–317CrossRefGoogle Scholar
  51. Sebens KP, Witting J, Helmuth B (1997) Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelotti). J Exp Mar Biol Ecol 211:1–28CrossRefGoogle Scholar
  52. Shick JM (1991) Functional biology of sea anemones. Chapman and Hall, London, p 395CrossRefGoogle Scholar
  53. Stevens CE, Hume ID (2004) Comparative physiology of the vertebrate digestive system, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  54. Tiffon Y, Bouillon J (1975) Digestion extracellulaire dans la cavité gastrique de Cerianthus lloydi Gosse. Structure du gastroderme, localisation et propriétés des enzymes protéolytiques. J Exp Mar Biol Ecol 18:255–269CrossRefGoogle Scholar
  55. Trench RK (1974) Nutritional potentials in Zoanthus sociathus (Coelenterata, Anthozoa). Helgoländer Meeresun 26:174–216CrossRefGoogle Scholar
  56. Van Praët M (1978) Étude histochimique et ultrastructurale des zones digestives d’Actinia equine L. (Cnidaria, Actiniaria) = Histochemical and ultrastructural study of the digestive parts of Actinia equinia. Cah Biol Mar 4Google Scholar
  57. Van Praët M (1980) Absorption of substances dissolved in the environment, particles and products of extracellular digestion in Actinia equine L. (Cnidaria, Actiniaria). Reprod Nutr Dev 20:1393–1399CrossRefPubMedGoogle Scholar
  58. Van Praët M (1982) Amylase trypsin and chymotrypsin-like proteases from Actinia equina L. their role in the nutrition of this sea anemone. Comp Biochem Physiol 3:523–528CrossRefGoogle Scholar
  59. Van Praët M (1985) Nutrition of sea anemones. Adv Mar Biol 22:65–99CrossRefGoogle Scholar
  60. Wellington GM (1980) Reversal of digestive interactions between pacific reef corals: mediation by sweeper tentacles. Oecologia 47:340–343CrossRefPubMedGoogle Scholar
  61. Wellington GR (1982) An experimental analysis of the effects of light and zooplankton on coral zonation. Oecologia 52:311–320CrossRefPubMedGoogle Scholar
  62. Wijgerde T, Diantari R, Lewaru MW, Verreth JAJ, Osinga R (2011) Extracoelenteric zooplankton feeding is a key mechanism of nutrient acquisition for the scleractinian coral Galaxea fascicularis. J Exp Biol 214:3351–3357CrossRefPubMedGoogle Scholar
  63. Wilson HV (1888) On the development of Manicina areolata. J Morph 2:191–252CrossRefGoogle Scholar
  64. Withers PC (1992) Comparative animal physiology. Saunders College, Fort WorthGoogle Scholar
  65. Yonge CM (1930) Studies on the physiology of corals. I. Feeding mechanisms and food. Sci Rep Great Barrier Reef Exped 1:13–57Google Scholar
  66. Yonge CM (1973) Coral reef project—papers in memory of Dr. Thomas F Goreau. 1. The nature of reef-building (Hermatypic) corals. Bull Mar Sci 23:1–15Google Scholar
  67. Young B (ed) (2006) Wheater’s functional histology: a text and color atlas (5th edn). Elsevier, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Israel Oceanographic and Limnological ResearchNational Institute of OceanographyHaifaIsrael
  2. 2.Faculty of AgricultureHebrew UniversityRehovotIsrael
  3. 3.George Mason UniversityFairfaxUSA

Personalised recommendations