Cell and Tissue Research

, Volume 367, Issue 3, pp 677–685 | Cite as

Developmental pathways in lung regeneration

Review

Abstract

The key processes of lung development have been elucidated in the past several decades, helping to identify and characterize the resident progenitor cells that ultimately generate the mature organ. The adult lung is a complex organ consisting in scores of different cell lineages that are remarkably quiescent in the absence of injury. Despite low cellular turnover, the lung can respond quickly and dramatically to acute damage, with spatially restricted stem and progenitor cells re-entering the cell cycle and differentiating to promote repair. The findings from lung developmental biology are now being used to examine the mechanisms that underlie lung regeneration. The use of in vitro models such as pluripotent stem cells and new methods of gene editing have provided models for understanding lung disease and exploring the mechanisms of lung regeneration and have raised the prospect of correcting lung dysfunction. We outline the way that basic studies into lung developmental biology are now being applied to lung regeneration, opening up new avenues of research that may ultimately be harnessed for treatments of lung disease.

Keywords

Lung development Regeneration Stem and progenitor cell Animal models In vitro models 

References

  1. Akram KM, Patel N, Spiteri MA, Forsyth NR (2016) Lung regeneration: endogenous and exogenous stem cell mediated therapeutic approaches. Int J Mol Sci 17:128CrossRefPubMedCentralGoogle Scholar
  2. Al Alam D, Green M, Tabatabai Irani R, Parsa S, Danopoulos S, Sala FG, Branch J, El Agha E, Tiozzo C, Voswinckel R, Jesudason EC, Warburton D, Bellusci S (2011) Contrasting expression of canonical Wnt signaling reporters TOPGAL, BATGAL and Axin2(LacZ) during murine lung development and repair. PLoS One 6:e23139CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aumiller V, Balsara N, Wilhelm J, Gunther A, Konigshoff M (2013) WNT/beta-catenin signaling induces IL-1beta expression by alveolar epithelial cells in pulmonary fibrosis. Am J Respir Cell Mol Biol 49:96–104CrossRefPubMedGoogle Scholar
  4. Balestrini JL, Gard AL, Gerhold KA, Wilcox EC, Liu A, Schwan J, Le AV, Baevova P, Dimitrievska S, Zhao L, Sundaram S, Sun H, Rittie L, Dyal R, Broekelmann TJ, Mecham RP, Schwartz MA, Niklason LE, White ES (2016) Comparative biology of decellularized lung matrix: implications of species mismatch in regenerative medicine. Biomaterials 102:220–230CrossRefPubMedGoogle Scholar
  5. Bals R, Beisswenger C, Blouquit S, Chinet T (2004) Isolation and air-liquid interface culture of human large airway and bronchiolar epithelial cells. J Cyst Fibros 3 (Suppl 2):49–51CrossRefPubMedGoogle Scholar
  6. Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble PW, Hogan BL (2013) Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123:3025–3036CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barker N, Huch M, Kujala P, Wetering M van de, Snippert HJ, Es JH van, Sato T, Stange DE, Begthel H, Born M van den, Danenberg E, Brink S van den, Korving J, Abo A, Peters PJ, Wright N, Poulsom R, Clevers H (2010) Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6:25–36Google Scholar
  8. Bertoncello I (2016) Properties of adult lung stem and progenitor cells. J Cell Physiol 231:2582–2589CrossRefPubMedGoogle Scholar
  9. Branchfield K, Nantie L, Verheyden JM, Sui P, Wienhold MD, Sun X (2016) Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science 351:707–710CrossRefPubMedPubMedCentralGoogle Scholar
  10. Calle EA, Mendez JJ, Ghaedi M, Leiby KL, Bove PF, Herzog EL, Sundaram S, Niklason LE (2015) Fate of distal lung epithelium cultured in a decellularized lung extracellular matrix. Tissue Eng Part A 21:1916–1928CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cardoso WV, Lu J (2006) Regulation of early lung morphogenesis: questions, facts and controversies. Development 133:1611–1624CrossRefPubMedGoogle Scholar
  12. Chokas AL, Trivedi CM, Lu MM, Tucker PW, Li S, Epstein JA, Morrisey EE (2010) Foxp1/2/4-NuRD interactions regulate gene expression and epithelial injury response in the lung via regulation of interleukin-6. J Biol Chem 285:13304–13313CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cyranoski D (2016) Chinese scientists to pioneer first human CRISPR trial. Nature 535:476–477CrossRefPubMedGoogle Scholar
  14. Danahay H, Pessotti AD, Coote J, Montgomery BE, Xia D, Wilson A, Yang H, Wang Z, Bevan L, Thomas C, Petit S, London A, LeMotte P, Doelemeyer A, Velez-Reyes GL, Bernasconi P, Fryer CJ, Edwards M, Capodieci P, Chen A, Hild M, Jaffe AB (2015) Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep 10:239–252CrossRefPubMedGoogle Scholar
  15. Degryse AL, Lawson WE (2011) Progress toward improving animal models for idiopathic pulmonary fibrosis. Am J Med Sci 341:444–449CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dekkers JF, Wiegerinck CL, Jonge HR de, Bronsveld I, Janssens HM, Winter-de Groot KM de, Brandsma AM, Jong NW de, Bijvelds MJ, Scholte BJ, Nieuwenhuis EE, Brink S van den, Clevers H, Ent CK van der, Middendorp S, Beekman JM (2013) A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 19:939–945Google Scholar
  17. Desai TJ, Brownfield DG, Krasnow MA (2014) Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507:190–194CrossRefPubMedPubMedCentralGoogle Scholar
  18. Esch MB, King TL, Shuler ML (2011) The role of body-on-a-chip devices in drug and toxicity studies. Annu Rev Biomed Eng 13:55–72CrossRefPubMedGoogle Scholar
  19. Firth AL, Dargitz CT, Qualls SJ, Menon T, Wright R, Singer O, Gage FH, Khanna A, Verma IM (2014) Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc Natl Acad Sci U S A 111:E1723–E1730CrossRefPubMedPubMedCentralGoogle Scholar
  20. Flozak AS, Lam AP, Russell S, Jain M, Peled ON, Sheppard KA, Beri R, Mutlu GM, Budinger GR, Gottardi CJ (2010) Beta-catenin/T-cell factor signaling is activated during lung injury and promotes the survival and migration of alveolar epithelial cells. J Biol Chem 285:3157–3167CrossRefPubMedGoogle Scholar
  21. Giangreco A, Reynolds SD, Stripp BR (2002) Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol 161:173–182CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gilpin SE, Ott HC (2015) Using nature’s platform to engineer bio-artificial lungs. Ann Am Thorac Soc 12 (Suppl 1):S45–S49CrossRefPubMedGoogle Scholar
  23. Goss AM, Tian Y, Tsukiyama T, Cohen ED, Zhou D, Lu MM, Yamaguchi TP, Morrisey EE (2009) Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell 17:290–298CrossRefPubMedPubMedCentralGoogle Scholar
  24. Green MD, Chen A, Nostro MC, d’Souza SL, Schaniel C, Lemischka IR, Gouon-Evans V, Keller G, Snoeck HW (2011) Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol 29:267–272CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gunawardhana LP, Gibson PG, Simpson JL, Powell H, Baines KJ (2014) Activity and expression of histone acetylases and deacetylases in inflammatory phenotypes of asthma. Clin Exp Allergy 44:47–57CrossRefPubMedGoogle Scholar
  26. Guseh JS, Bores SA, Stanger BZ, Zhou Q, Anderson WJ, Melton DA, Rajagopal J (2009) Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development 136:1751–1759CrossRefPubMedPubMedCentralGoogle Scholar
  27. Haczku A, Atochina EN, Tomer Y, Chen H, Scanlon ST, Russo S, Xu J, Panettieri RA Jr, Beers MF (2001) Aspergillus fumigatus-induced allergic airway inflammation alters surfactant homeostasis and lung function in BALB/c mice. Am J Respir Cell Mol Biol 25:45–50CrossRefPubMedGoogle Scholar
  28. Harris-Johnson KS, Domyan ET, Vezina CM, Sun X (2009) beta-Catenin promotes respiratory progenitor identity in mouse foregut. Proc Natl Acad Sci U S A 106:16287–16292CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hashimoto S, Chen H, Que J, Brockway BL, Drake JA, Snyder JC, Randell SH, Stripp BR (2012) beta-Catenin-SOX2 signaling regulates the fate of developing airway epithelium. J Cell Sci 125:932–942CrossRefPubMedPubMedCentralGoogle Scholar
  30. Henderson WR Jr, Chi EY, Ye X, Nguyen C, Tien YT, Zhou B, Borok Z, Knight DA, Kahn M (2010) Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A 107:14309–14314CrossRefPubMedPubMedCentralGoogle Scholar
  31. Herriges M, Morrisey EE (2014) Lung development: orchestrating the generation and regeneration of a complex organ. Development 141:502–513CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR (2001) Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24:671–681CrossRefPubMedGoogle Scholar
  33. Huang SX, Islam MN, O’Neill J, Hu Z, Yang YG, Chen YW, Mumau M, Green MD, Vunjak-Novakovic G, Bhattacharya J, Snoeck HW (2013) Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol 32:84–91CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huh D, Fujioka H, Tung YC, Futai N, Paine R 3rd, Grotberg JB, Takayama S (2007) Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc Natl Acad Sci U S A 104:18886–18891CrossRefPubMedPubMedCentralGoogle Scholar
  35. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668CrossRefPubMedGoogle Scholar
  36. Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, Thorneloe KS, McAlexander MA, Ingber DE (2012) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4:159ra147CrossRefPubMedGoogle Scholar
  37. Ikonomou L, Freishtat RJ, Wagner DE, Panoskaltsis-Mortari A, Weiss DJ (2016) The global emergence of unregulated stem cell treatments for respiratory diseases. Professional societies need to Act. Ann Am Thorac Soc 13:1205–1207CrossRefPubMedGoogle Scholar
  38. Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM, Barczyk A, Hayashi S, Adcock IM, Hogg JC, Barnes PJ (2005) Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 352:1967–1976CrossRefPubMedGoogle Scholar
  39. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835CrossRefPubMedGoogle Scholar
  40. Kotton DN, Morrisey EE (2014) Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med 20:822–832CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kumar PA, Hu Y, Yamamoto Y, Hoe NB, Wei TS, Mu D, Sun Y, Joo LS, Dagher R, Zielonka EM, Wang Y de, Lim B, Chow VT, Crum CP, Xian W, McKeon F (2011) Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell 147:525–538Google Scholar
  42. Kumar RK, Foster PS (2012) Are mouse models of asthma appropriate for investigating the pathogenesis of airway hyper-responsiveness? Front Physiol 3:312PubMedPubMedCentralGoogle Scholar
  43. Kurup VP, Grunig G (2002) Animal models of allergic bronchopulmonary aspergillosis. Mycopathologia 153:165–177CrossRefPubMedGoogle Scholar
  44. Lee JH, Bhang DH, Beede A, Huang TL, Stripp BR, Bloch KD, Wagers AJ, Tseng YH, Ryeom S, Kim CF (2014) Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell 156:440–455CrossRefPubMedPubMedCentralGoogle Scholar
  45. Liu YY, Li LF, Fu JY, Kao KC, Huang CC, Chien Y, Liao YW, Chiou SH, Chang YL (2014) Induced pluripotent stem cell therapy ameliorates hyperoxia-augmented ventilator-induced lung injury through suppressing the Src pathway. PLoS One 9:e109953CrossRefPubMedPubMedCentralGoogle Scholar
  46. Long C, Finch C, Esch M, Anderson W, Shuler M, Hickman J (2012) Design optimization of liquid-phase flow patterns for microfabricated lung on a chip. Ann Biomed Eng 40:1255–1267CrossRefPubMedGoogle Scholar
  47. Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao Y, Jean JC, Kwok LW, Mou H, Rajagopal J, Shen SS, Dowton AA, Serra M, Weiss DJ, Green MD, Snoeck HW, Ramirez MI, Kotton DN (2012) Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 10:398–411CrossRefPubMedPubMedCentralGoogle Scholar
  48. McIntyre LA, Moher D, Fergusson DA, Sullivan KJ, Mei SH, Lalu M, Marshall J, McLeod M, Griffin G, Grimshaw J, Turgeon A, Avey MT, Rudnicki MA, Jazi M, Fishman J, Stewart DJ, G. Canadian Critical Care Translational Biology (2016) Efficacy of mesenchymal stromal cell therapy for acute lung injury in preclinical animal models: a systematic review. PLoS One 11:e0147170CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mercer PF, Abbott-Banner K, Adcock IM, Knowles RG (2015) Translational models of lung disease. Clin Sci (Lond) 128:235–256CrossRefGoogle Scholar
  50. Mori M, Mahoney JE, Stupnikov MR, Paez-Cortez JR, Szymaniak AD, Varelas X, Herrick DB, Schwob J, Zhang H, Cardoso WV (2015) Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors. Development 142:258–267CrossRefPubMedPubMedCentralGoogle Scholar
  51. Morrisey EE, Hogan BL (2010) Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 18:8–23CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mou H, Zhao R, Sherwood R, Ahfeldt T, Lapey A, Wain J, Sicilian L, Izvolsky K, Musunuru K, Cowan C, Rajagopal J (2012) Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell 10:385–397CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nadkarni RR, Abed S, Draper JS (2016) Organoids as a model system for studying human lung development and disease. Biochem Biophys Res Commun 473:675–682CrossRefPubMedGoogle Scholar
  54. Pardo-Saganta A, Law BM, Tata PR, Villoria J, Saez B, Mou H, Zhao R, Rajagopal J (2015) Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations. Cell Stem Cell 16:184–197CrossRefPubMedPubMedCentralGoogle Scholar
  55. Peng T, Frank DB, Kadzik RS, Morley MP, Rathi KS, Wang T, Zhou S, Cheng L, Lu MM, Morrisey EE (2015) Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration. Nature 526:578–582CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rawlins EL, Clark CP, Xue Y, Hogan BL (2009) The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development 136:3741–3745CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ren X, Moser PT, Gilpin SE, Okamoto T, Wu T, Tapias LF, Mercier FE, Xiong L, Ghawi R, Scadden DT, Mathisen DJ, Ott HC (2015) Engineering pulmonary vasculature in decellularized rat and human lungs. Nat Biotechnol 33:1097–1102CrossRefPubMedGoogle Scholar
  58. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BL (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A 106:12771–12775CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, Noble PW, Hogan BL (2011a) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial-to-mesenchymal transition. Proc Natl Acad Sci USA 108:E1475–E1483Google Scholar
  60. Rock JR, Gao X, Xue Y, Randell SH, Kong YY, Hogan BL (2011b) Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell 8:639–648CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sato T, Vries RG, Snippert HJ, Wetering M van de, Barker N, Stange DE, Es JH van, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265Google Scholar
  62. Shi W, Xu J, Warburton D (2009) Development, repair and fibrosis: what is common and why it matters. Respirology 14:656–665CrossRefPubMedPubMedCentralGoogle Scholar
  63. Somers A, Jean JC, Sommer CA, Omari A, Ford CC, Mills JA, Ying L, Sommer AG, Jean JM, Smith BW, Lafyatis R, Demierre MF, Weiss DJ, French DL, Gadue P, Murphy GJ, Mostoslavsky G, Kotton DN (2010) Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 28:1728–1740CrossRefPubMedPubMedCentralGoogle Scholar
  64. Stabler CT, Lecht S, Lazarovici P, Lelkes PI (2015) Mesenchymal stem cells for therapeutic applications in pulmonary medicine. Br Med Bull 115:45–56CrossRefPubMedGoogle Scholar
  65. Stabler CT, Caires LC Jr, Mondrinos MJ, Marcinkiewicz C, Lazarovici P, Wolfson MR, Lelkes PI (2016) Enhanced re-endothelialization of decellularized rat lungs. Tissue Eng Part C Methods 22:439–450CrossRefPubMedGoogle Scholar
  66. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMedGoogle Scholar
  67. Tata PR, Mou H, Pardo-Saganta A, Zhao R, Prabhu M, Law BM, Vinarsky V, Cho JL, Breton S, Sahay A, Medoff BD, Rajagopal J (2013) Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 503:218–223PubMedPubMedCentralGoogle Scholar
  68. Tsao PN, Vasconcelos M, Izvolsky KI, Qian J, Lu J, Cardoso WV (2009) Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development 136:2297–2307CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tsao PN, Wei SC, Wu MF, Huang MT, Lin HY, Lee MC, Lin KM, Wang IJ, Kaartinen V, Yang LT, Cardoso WV (2011) Notch signaling prevents mucous metaplasia in mouse conducting airways during postnatal development. Development 138:3533–3543CrossRefPubMedPubMedCentralGoogle Scholar
  70. Tsao PN, Matsuoka C, Wei SC, Sato A, Sato S, Hasegawa K, Chen HK, Ling TY, Mori M, Cardoso WV, Morimoto M (2016) Epithelial Notch signaling regulates lung alveolar morphogenesis and airway epithelial integrity. Proc Natl Acad Sci U S A 113:8242–8247CrossRefPubMedPubMedCentralGoogle Scholar
  71. Vaughan AE, Brumwell AN, Xi Y, Gotts JE, Brownfield DG, Treutlein B, Tan K, Tan V, Liu FC, Looney MR, Matthay MA, Rock JR, Chapman HA (2015) Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 517:621–625CrossRefPubMedGoogle Scholar
  72. Vaughan MB, Ramirez RD, Wright WE, Minna JD, Shay JW (2006) A three-dimensional model of differentiation of immortalized human bronchial epithelial cells. Differentiation 74:141–148CrossRefPubMedGoogle Scholar
  73. Wang Y, Tian Y, Morley MP, Lu MM, Demayo FJ, Olson EN, Morrisey EE (2013) Development and regeneration of Sox2+ endoderm progenitors are regulated by a Hdac1/2-Bmp4/Rb1 regulatory pathway. Dev Cell 24:345–358CrossRefPubMedPubMedCentralGoogle Scholar
  74. Whitsett JA, Haitchi HM, Maeda Y (2011) Intersections between pulmonary development and disease. Am J Respir Crit Care Med 184:401–406CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wong AP, Bear CE, Chin S, Pasceri P, Thompson TO, Huan LJ, Ratjen F, Ellis J, Rossant J (2012) Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat Biotechnol 30:876–882CrossRefPubMedPubMedCentralGoogle Scholar
  76. Xing Y, Li A, Borok Z, Li C, Minoo P (2012) NOTCH1 is required for regeneration of Clara cells during repair of airway injury. Stem Cells 30:946–955CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zhang Y, Goss AM, Cohen ED, Kadzik R, Lepore JJ, Muthukumaraswamy K, Yang J, DeMayo FJ, Whitsett JA, Parmacek MS, Morrisey EE (2008) A Gata6-Wnt pathway required for epithelial stem cell development and airway regeneration. Nat Genet 40:862–870CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zuo W, Zhang T, Wu DZ, Guan SP, Liew AA, Yamamoto Y, Wang X, Lim SJ, Vincent M, Lessard M, Crum CP, Xian W, McKeon F (2015) p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration. Nature 517:616–620CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Collin T. Stabler
    • 1
    • 2
    • 3
    • 4
  • Edward E. Morrisey
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  1. 1.Department of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Penn Center for Pulmonary BiologyUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Penn Cardiovascular InstituteUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Penn Institute for Regenerative MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  5. 5.Department of Cell and Developmental BiologyUniversity of PennsylvaniaPhiladelphiaUSA
  6. 6.Translational Research CenterUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations