Advertisement

Cell and Tissue Research

, Volume 367, Issue 3, pp 469–480 | Cite as

Mechanisms of lung aging

  • Christina Brandenberger
  • Christian Mühlfeld
Review

Abstract

Lung aging is associated with structural remodeling, a decline of respiratory function and a higher susceptibility to acute and chronic lung diseases. Individual factors that modulate pulmonary aging include basic genetic configuration, environmental exposure, life-style and biography of systemic diseases. However, the actual aging of the lung takes place in pulmonary resident cells and is closely linked to aging of the immune system (immunosenescence). Therefore, this article reviews the current knowledge about the impact of aging on pulmonary cells and the immune system, without analyzing those factors that may accelerate the aging process in depth. Hallmarks of aging include alterations at molecular, cellular and cell–cell interaction levels. Because of the great variety of cell types in the lung, the consequences of aging display a broad spectrum of phenotypes. For example, aging is associated with more collagen and less elastin production by fibroblasts, thus increasing pulmonary stiffness and lowering compliance. Decreased sympathetic airway innervation may increase the constriction status of airway smooth muscle cells. Aging of resident and systemic immune cells leads to a pro-inflammatory milieu and reduced capacity of fighting infectious diseases. The current review provides an overview of cellular changes occurring with advancing age in general and in several cell types of the lung as well as of the immune system. Thereby, this survey not only aims at providing a better understanding of the mechanisms of pulmonary aging but also to identify gaps in knowledge that warrant further investigations.

Keywords

Pulmonary aging Cellular senescence Immunosenescence Pulmonary cells Lung function Microbiome ᅟ 

Notes

Acknowledgments

The authors’ work is supported by DFG via the Cluster of Excellence Rebirth, BMBF via the Deutsches Zentrum für Lungenforschung (DZL) and by the Hochschulinterne Leistungsförderung (HilF) of the Hannover Medical School.

References

  1. Acosta JC, Banito A, Wuestefeld T et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15:978–90PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alder JK, Barkauskas CE, Limjunyawong N et al (2015) Telomere dysfunction causes alveolar stem cell failure. Proc Natl Acad Sci U S A 112:5099–5104PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amsellem V, Gary-Bobo G, Marcos E et al (2011) Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 184:1358–1366PubMedCrossRefGoogle Scholar
  4. Aoshiba K, Tsuji T, Nagai A (2003) Bleomycin induces cellular senescence in alveolar epithelial cells. Eur Respir J 22:436–443PubMedCrossRefGoogle Scholar
  5. Aunan JR, Watson MM, Hagland HR, Søreide K (2016) Molecular and biological hallmarks of ageing. Br J Surg 103:e29–e46PubMedCrossRefGoogle Scholar
  6. Bailey KL, Bonasera SJ, Wilderdyke M et al (2014) Aging causes a slowing in ciliary beat frequency, mediated by PKCε. Am J Physiol Lung Cell Mol Physiol 306:L584–9PubMedPubMedCentralCrossRefGoogle Scholar
  7. Beli E, Clinthorne JF, Duriancik DM et al (2011) Natural killer cell function is altered during the primary response of aged mice to influenza infection. Mech Ageing Dev 132:503–510. doi: 10.1016/j.mad.2011.08.005 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Belvisi MG (2002) Overview of the innervation of the lung. Curr Opin Pharmacol 2:211–215PubMedCrossRefGoogle Scholar
  9. Bhayadia R, Schmidt BMW, Melk A, Hömme M (2016) Senescence-induced oxidative stress causes endothelial dysfunction. J Gerontol A 71:161–9CrossRefGoogle Scholar
  10. Biagi E, Candela M, Turroni S et al (2013) Ageing and gut microbes: perspectives for health maintenance and longevity. Pharm Res 69:11–20CrossRefGoogle Scholar
  11. Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12:1133–1138PubMedCrossRefGoogle Scholar
  12. Boyd AR, Orihuela CJ (2011) Dysregulated inflammation as a risk factor for pneumonia in the elderly. Aging Dis 2:487–500PubMedPubMedCentralGoogle Scholar
  13. Boyd AR, Shivshankar P, Jiang S et al (2012) Age-related defects in TLR2 signaling diminish the cytokine response by alveolar macrophages during murine pneumococcal pneumonia. Exp Gerontol 47:507–18PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brandenberger C, Li N, Jackson-Humbles DN et al (2014) Enhanced allergic airway disease in old mice is associated with a Th17 response. Clin Exp Allergy 44:1282–1292PubMedCrossRefGoogle Scholar
  15. Buist AS, McBurnie MA, Vollmer WM et al (2007) International variation in the prevalence of COPD (The BOLD Study): a population-based prevalence study. Lancet 370:741–750PubMedCrossRefGoogle Scholar
  16. Busse PJ, Mathur SK (2010) Age-related changes in immune function: effect on airway inflammation. J Allergy Clin Immunol 126:690–9PubMedPubMedCentralCrossRefGoogle Scholar
  17. Calhoun C, Shivshankar P, Saker M et al (2015) Senescent cells contribute to the physiological remodeling of aged lungs. J Gerontol A 1:1–9Google Scholar
  18. Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705PubMedCrossRefGoogle Scholar
  19. Campos C, Pera A, Lopez-Fernandez I et al (2014) Proinflammatory status influences NK cells subsets in the elderly. Immunol Lett 162:10–14. doi: 10.1016/j.imlet.2014.06.015 CrossRefGoogle Scholar
  20. Canan CH, Gokhale NS, Carruthers B et al (2014) Characterization of lung inflammation and its impact on macrophage function in aging. J Leukoc Biol 96:473–80PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen L-W, Chen P-H, Hsu C-M (2011) Commensal microflora contribute to host defense against Escherichia coli pneumonia through Toll-like receptors. Shock 36:67–75PubMedCrossRefGoogle Scholar
  22. Chen MM, Palmer JL, Plackett TP et al (2014) Age-related differences in the neutrophil response to pulmonary pseudomonas infection. Exp Gerontol 54:42–46PubMedCrossRefGoogle Scholar
  23. Chen R, Zhang K, Chen H et al (2015) Telomerase deficiency causes alveolar stem cell senescence-associated low-grade inflammation in lungs. J Biol Chem 290:30813–30829PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chilosi M, Carloni A, Rossi A, Poletti V (2013) Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res 162:156–173PubMedCrossRefGoogle Scholar
  25. Chougnet CA, Thacker RI, Shehata HM et al (2015) Loss of phagocytic and antigen cross-presenting capacity in aging dendritic cells is associated with mitochondrial dysfunction. J Immunol 195:2624–32PubMedPubMedCentralCrossRefGoogle Scholar
  26. Claesson MJ, Cusack S, O’Sullivan O et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108:4586–91PubMedCrossRefGoogle Scholar
  27. Claesson MJ, Jeffery IB, Conde S et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–84PubMedGoogle Scholar
  28. Cohen RAC, Patel A, Green FHY (2008) Lung disease caused by exposure to coal mine and silica dust. Semin Respir Crit Care Med 29:651–661PubMedCrossRefGoogle Scholar
  29. Comi P, Chiaramonte R, Maier JAM (1995) Senescence-dependent regulation of type 1 plasminogen activator inhibitor in human vascular endothelial cells. Exp Cell Res 219:304–308PubMedCrossRefGoogle Scholar
  30. De Oliveira-Maul JP, De Carvalho HB, Goto DM et al (2013) Aging, diabetes, and hypertension are associated with decreased nasal mucociliary clearance. Chest 143:1091–1097PubMedCrossRefGoogle Scholar
  31. Dickson RP, Erb-Downward JR, Huffnagle GB (2015) Homeostasis and its Disruption in the Lung Microbiome. Am J Physiol Lung Cell Mol Physiol 309:L1047–55PubMedPubMedCentralGoogle Scholar
  32. Diller ML, Kudchadkar RR, Delman KA et al (2016) Balancing inflammation: The link between Th17 and regulatory T cells. Mediat Inflamm. doi: 10.1017/CBO9781107415324.004 Google Scholar
  33. Doe C, Bafadhel M, Siddiqui S et al (2010) Expression of the T helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD. Chest 138:1140–1147PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ebihara T, Ebihara S, Watando A et al (2006) Effects of menthol on the triggering of the swallowing reflex in elderly patients with dysphagia. Br J Clin Pharmacol 62:369–371PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ebihara S, Ebihara T, Kanezaki M et al (2011) Aging deteriorated perception of urge-to-cough without changing cough reflex threshold to citric acid in female never-smokers. Cough. doi: 10.1186/1745-9974-7-3 PubMedPubMedCentralGoogle Scholar
  36. Ebihara S, Ebihara T, Kohzuki M (2012) Effect of aging on cough and swallowing reflexes: Implications for preventing aspiration pneumonia. Lung 190:29–33PubMedCrossRefGoogle Scholar
  37. Edwards BA, O’Driscoll DM, Ali A et al (2010) Aging and sleep: physiology and pathophysiology. Semin Respir Crit Care Med 31:618–633PubMedPubMedCentralCrossRefGoogle Scholar
  38. El Assar M, Angulo J, Rodriguez-Manas L (2013) Oxidative stress and vascular inflammation in aging. Free Radic Biol Med 65:380–401. doi: 10.1016/j.freeradbiomed.2013.07.003 PubMedCrossRefGoogle Scholar
  39. Ely EW, Wheeler AP, Thompson BT et al (2002) Recovery rate and prognosis in older persons who develop acute lung injury and the acute respiratory distress syndrome. Ann Intern Med 136:25–36PubMedGoogle Scholar
  40. Erusalimsky JD (2009) Vascular endothelial senescence: from mechanisms to pathophysiology. J Appl Physiol 106:326–32PubMedCrossRefGoogle Scholar
  41. Falchetti ML, Mongiardi MP, Fiorenzo P et al (2008) Inhibition of telomerase in the endothelial cells disrupts tumor angiogenesis in glioblastoma xenografts. Int J Cancer 122:1236–1242PubMedCrossRefGoogle Scholar
  42. Faner R, Rojas M, Macnee W, Agustí A (2012) Abnormal lung aging in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 186:306–13PubMedCrossRefGoogle Scholar
  43. Fortin CF, McDonald PP, Lesur O, Fülöp T (2008) Aging and neutrophils: there is still much to do. Rejuvenation Res 11:873–882PubMedCrossRefGoogle Scholar
  44. Franceschi C, Bonafè M, Valensin S et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254PubMedCrossRefGoogle Scholar
  45. Frasca D, Blomberg BB (2015) Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology. doi: 10.1007/s10522-015-9578-8 PubMedPubMedCentralGoogle Scholar
  46. Fukuchi Y (2009) The aging lung and chronic obstructive pulmonary disease: similarity and difference. Proc Am Thorac Soc 6:570–572PubMedCrossRefGoogle Scholar
  47. Fulop T, Fortin C, Lesur O (2012) The innate immune system and ageing: what is the contribution to immunosenescence. Bentham Open 6:121–131. doi: 10.2174/1876326X01206010121 Google Scholar
  48. Garcia-Nunez M, Millares L, Pomares X et al (2014) Severity-related changes of bronchial microbiome in chronic obstructive pulmonary disease. J Clin Microbiol 52:4217–4223PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gayoso I, Sanchez-Correa B, Campos C et al (2011) Immunosenescence of human natural killer cells. J Innate Immun 3:337–343PubMedCrossRefGoogle Scholar
  50. Geppetti P, De Rossi M, Mione MC et al (1988) Age-related changes in vasoactive intestinal polypeptide levels and distribution in the rat. J Neural Transm 74:1–10PubMedCrossRefGoogle Scholar
  51. Godin LM, Sandri BJ, Wagner DE et al (2016) Decreased laminin expression by human lung epithelial cells and fibroblasts cultured in acellular lung scaffolds from aged mice. PLoS ONE. doi: 10.1371/journal.pone.0150966 Google Scholar
  52. Gomez Perdiguero E, Klapproth K, Schulz C et al (2014) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–551PubMedCrossRefGoogle Scholar
  53. Gomez CR, Hirano S, Cutro BT et al (2007) Advanced age exacerbates the pulmonary inflammatory response after lipopolysaccharide exposure. Crit Care Med 35:246–51PubMedCrossRefGoogle Scholar
  54. Green FHY, Pinkerton KE (2004) Environmental determinants of lung aging. In: Harding R, Pinkerton KE, Plopper CG (eds) The lung: development, aging and the environment. Elsevier, San Diego, pp 377–395CrossRefGoogle Scholar
  55. Gross P, Hermogenes A, Sacks H et al (1995) The efficacy of influenza vaccine in elderly persons. A meta-analysis and review of the literature. Ann Intern Med 123:518–527PubMedCrossRefGoogle Scholar
  56. Harman D (2006) Free radical theory of aging: An update - Increasing the functional life span. Ann N Y Acad Sci 1067:10–21PubMedCrossRefGoogle Scholar
  57. Hashimoto Y, Sugiura H (2016) 27-Hydroxycholesterol Accelerates Cellular Senescence in Human Lung Resident Cells. Am J Physiol Lung Cell Mol Physiol 310:L1028–1041PubMedCrossRefGoogle Scholar
  58. Hayhoe RPG, Henson SM, Akbar AN, Palmer DB (2010) Variation of human natural killer cell phenotypes with age: Identification of a unique KLRG1-negative subset. Hum Immunol 71:676–681PubMedCrossRefGoogle Scholar
  59. Haynes L, Swain SL (2006) Why aging T cells fail: implications for vaccination. Immunity 24:663–6PubMedCrossRefGoogle Scholar
  60. Hazeldine J, Lord JM (2013) The impact of ageing on natural killer cell function and potential consequences for health in older adults. Ageing Res Rev 12:1069–1078PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hearps AC, Martin GE, Angelovich TA et al (2012) Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 11:867–875PubMedCrossRefGoogle Scholar
  62. Herbst T, Sichelstiel A, Schär C et al (2011) Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am J Respir Crit Care Med 184:198–205PubMedCrossRefGoogle Scholar
  63. Higashimoto Y, Fukuchi Y, Shimada Y et al (1993) The effects of aging on the function of alveolar macrophages in mice. Mech Ageing Dev 69:207–217PubMedCrossRefGoogle Scholar
  64. Hirahara K, Nakayama T (2016) CD4+ T-cell subsets in inflammatory diseases: Beyond the Th1/Th2 paradigm. Int Immunol 28:163–171PubMedCrossRefGoogle Scholar
  65. Hodge G, Barnawi J, Jurisevic C et al (2014) Lung cancer is associated with decreased expression of perforin, granzyme B and interferon (IFN)-γ by infiltrating lung tissue T cells, natural killer (NK) T-like and NK cells. Clin Exp Immunol 178:79–85PubMedPubMedCentralCrossRefGoogle Scholar
  66. Holly AC, Grellscheid S, van de Walle P et al (2015) Comparison of senescence-associated miRNAs in primary skin and lung fibroblasts. Biogerontology 16:423–434PubMedCrossRefGoogle Scholar
  67. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–73PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hörmannsperger G, Clavel T, Haller D (2012) Gut matters: microbe-host interactions in allergic diseases. J Allergy Clin Immunol 129:1452–9PubMedCrossRefGoogle Scholar
  69. Huang K, Rabold R, Schofield B et al (2007) Age-dependent changes of airway and lung parenchyma in C57BL/6J mice. J Appl Physiol 102:200–206PubMedCrossRefGoogle Scholar
  70. Huang WT, Akhter H, Jiang C et al (2015) Plasminogen activator inhibitor 1, fibroblast apoptosis resistance, and aging-related susceptibility to lung fibrosis. Exp Gerontol 61:62–75PubMedCrossRefGoogle Scholar
  71. Ingenito EP, Mora R, Cullivan M et al (2001) Decreased surfactant protein-B expression and surfactant dysfunction in a murine model of acute lung injury. Am J Respir Cell Mol Biol 25:35–44PubMedCrossRefGoogle Scholar
  72. Inoue S, Suzuki K, Komori Y et al (2014) Persistent inflammation and T cell exhaustion in severe sepsis in the elderly. Crit Care. doi: 10.1186/cc13941 PubMedGoogle Scholar
  73. Ito Y, Betsuyaku T, Moriyama C et al (2009) Aging affects lipopolysaccharide-induced upregulation of heme oxygenase-1 in the lungs and alveolar macrophages. Biogerontology 10:173–80PubMedCrossRefGoogle Scholar
  74. Jane-Wit D, Chun HJ (2012) Mechanisms of dysfunction in senescent pulmonary endothelium. J Gerontol A 67:236–241CrossRefGoogle Scholar
  75. Janssens JP, Pache JC, Nicod LP (1999) Physiological changes in respiratory function associated with ageing. Eur Respir J 13:197–205PubMedCrossRefGoogle Scholar
  76. Johnston LK, Rims CR, Gill SE et al (2012) Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury. Am J Respir Cell Mol Biol 47:417–426PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kim K-A, Jeong J-J, Yoo S-Y, Kim D-H (2016) Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice. BMC Microbiol. doi: 10.1186/s12866-016-0625-7 Google Scholar
  78. Kipen HM, Lilis R, Suzuki Y et al (1987) Pulmonary fibrosis in asbestos insulation workers with lung cancer: a radiological and histopathological evaluation. Br J Ind Med 44:96–100PubMedPubMedCentralGoogle Scholar
  79. Lakshman CR, Liu Y, Popa D et al (2006) Molecular basis of age-associated cytokine dysregulation in LPS-stimulated macrophages. J Leucoc Biol 79:1314–1327Google Scholar
  80. Larbi A, Franceschi C, Mazzatti D et al (2008) Aging of the immune system as a prognostic factor for human longevity. Physiology 23:64–74PubMedCrossRefGoogle Scholar
  81. Lech M, Anders HJ (2013) Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta Mol Basis Dis 1832:989–997CrossRefGoogle Scholar
  82. Lee N, Shin MS, Kang I (2012) T-cell biology in aging, with a focus on lung disease. J Gerontol A 67:254–63CrossRefGoogle Scholar
  83. Lee Y, Kim SY, Bae Y (2014) Upregulation of miR-760 and miR-186 is associated with replicative senescence in human lung fibroblast cells. Mol Cells 37:620–627PubMedPubMedCentralCrossRefGoogle Scholar
  84. Linge HM, Ochani K, Lin K et al (2015) Age-dependent alterations in the inflammatory response to pulmonary challenge. Immunol Res 63:209–215PubMedPubMedCentralCrossRefGoogle Scholar
  85. Loeb M (2004) Pneumonia in the elderly. Curr Opin Infect Dis 17:127–130PubMedCrossRefGoogle Scholar
  86. López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–217PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lu H, Yuan H, Chen S et al (2012) Senescent endothelial dysfunction is attributed to the up-regulation of sphingosine-1-phosphate receptor-2 in aged rats. Mol Cell Biochem 363:217–224PubMedCrossRefGoogle Scholar
  88. Maciel-Barón LA, Morales-Rosales SL, Aquino-Cruz AA et al (2016) Senescence associated secretory phenotype profile from primary lung mice fibroblasts depends on the senescence induction stimuli. Age. doi: 10.1007/s11357-016-9886-1 PubMedPubMedCentralGoogle Scholar
  89. Mahbub S, Deburghgraeve CR, Kovacs EJ (2012) Advanced age impairs macrophage polarization. J Interf Cytokine Res 32:18–26CrossRefGoogle Scholar
  90. Maier JA, Statuto M, Ragnotti G (1993) Senescence stimulates U937-endothelial cell interactions. Exp Cell Res 208:270–274PubMedCrossRefGoogle Scholar
  91. Malandraki GA, Perlman AL, Karampinos DC, Sutton BP (2011) Reduced somatosensory activations in swallowing with age. Hum Brain Mapp 32:730–743PubMedCrossRefGoogle Scholar
  92. McClaran SR, Babcock MA, Pegelow DF et al (1995) Longitudinal effects of aging on lung function at rest and exercise in healthy active fit elderly adults. J Appl Physiol 78:1957–1968PubMedGoogle Scholar
  93. Meiners S, Eickelberg O, Königshoff M (2015) Hallmarks of the ageing lung. Eur Respir J 45:807–827PubMedCrossRefGoogle Scholar
  94. Meyer KC (2005) Aging. Proc Natl Acad Sci U S A 2:433–9Google Scholar
  95. Meyer K (2010) The role of immunity and inflammation in lung senescence and susceptibility to infection in the elderly. Sem Respir Crit Care Med 31:561–574CrossRefGoogle Scholar
  96. Meyer KC (2012) Management of interstitial lung disease in elderly patients. Curr Opin Pulm Med 18:483–92PubMedCrossRefGoogle Scholar
  97. Meyer KC, Ershler W, Rosenthal NS et al (1996) Immune dysregulation in the aging human lung. Am J Respir Crit Care Med 153:1072–1079PubMedCrossRefGoogle Scholar
  98. Miller MR (2010) Structural and physiological age-associated changes in aging lungs. Semin Respir Crit Care Med 31:521–527PubMedCrossRefGoogle Scholar
  99. Misharin AV, Morales-Nebreda L, Mutlu GM et al (2013) Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. Am J Respir Cell Mol Biol 49:503–10PubMedPubMedCentralCrossRefGoogle Scholar
  100. Moliva JI, Rajaram MVS, Sidiki S et al (2014) Molecular composition of the alveolar lining fluid in the aging lung. Age 36:1187–1199CrossRefGoogle Scholar
  101. Murciano C, Yáñez A, O’Connor JE et al (2008) Influence of aging on murine neutrophil and macrophage function against Candida albicans. FEMS Immunol Med Microbiol 53:214–221PubMedCrossRefGoogle Scholar
  102. Murray PJ, Allen JE, Biswas SK et al (2014) Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 41:14–20PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ochs M, Weibel ER (2008) Functional design of the human lung for gas exchange. In: Fishman AP (ed) Fishman’s Pulmonary Disease and Disorders, 4th edn. McGraw Hill, New York, pp 23–70Google Scholar
  104. Odamaki T, Kato K, Sugahara H et al (2016) Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. doi: 10.1186/s12866-016-0708-5 PubMedPubMedCentralGoogle Scholar
  105. Ogawa K, Suzuki K, Okutsu M et al (2008) The association of elevated reactive oxygen species levels from neutrophils with low-grade inflammation in the elderly. Immun Ageing. doi: 10.1186/1742-4933-5-13 PubMedPubMedCentralGoogle Scholar
  106. Opal SM, Girard TD, Ely EW (2005) The immunopathogenesis of sepsis in elderly patients. Clin Infect Dis 41:S504–12PubMedCrossRefGoogle Scholar
  107. Orgeig S, Daniels CB (2004) Effects of aging, disease and the environment on the surfactant system. In: Harding R, Pinkerton KE, Plopper CG (eds) The lung: development, aging and the environment. Elsevier, San Diego, pp 363–375CrossRefGoogle Scholar
  108. Ortega-Martínez M, Rodríguez-Flores LE, Ancer-Arellano A et al (2016) Analysis of cell turnover in the bronchiolar epithelium through the normal aging process. Lung. doi: 10.1007/s00408-016-9890-3 PubMedGoogle Scholar
  109. Petroianni A, Ceccarelli D, Conti V, Terzano C (2006) Aspiration pneumonia Pathophysiological aspects, prevention and management: A review. Panminerva Med 48:231–239PubMedGoogle Scholar
  110. Podlutsky A, Ballabh P, Csiszar A (2010) Oxidative stress and endothelial dysfunction in pulmonary arteries of aged rats. AJP Heart Circ Physiol 298:H346–51CrossRefGoogle Scholar
  111. Pragman AA, Kim HB, Reilly CS et al (2012) The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS ONE. doi: 10.1371/journal.pone.0047305 PubMedPubMedCentralGoogle Scholar
  112. Quirk JD, Sukstanskii AL, Woods JC et al (2016) Experimental evidence of age-related adaptive changes in human acinar airways. J Appl Physiol 120:159–165PubMedCrossRefGoogle Scholar
  113. Raghu G, Weycker D, Edelsberg J et al (2006) Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174:810–816PubMedCrossRefGoogle Scholar
  114. Ray AD, Ogasa T, Magalang UJ et al (2008) Aging increases upper airway collapsibility in Fischer 344 rats. J Appl Physiol 105:1471–1476PubMedPubMedCentralCrossRefGoogle Scholar
  115. Regina C, Panatta E, Candi E et al (2016) Vascular ageing and endothelial cell senescence: Molecular mechanisms of physiology and diseases. Mech Ageing Dev. doi: 10.1016/j.mad.2016.05.003 PubMedGoogle Scholar
  116. Ricci A, Mariotta S, Greco S et al (1997) Age-related changes of the noradrenergic innervation of rat tracheo-bronchial tree and pulmonary vasculature. Mech Ageing Dev 99:245–255PubMedCrossRefGoogle Scholar
  117. Sahin E, DePinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464:520–8PubMedPubMedCentralCrossRefGoogle Scholar
  118. Salminen A, Huuskonen J, Ojala J et al (2008) Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7:83–105PubMedCrossRefGoogle Scholar
  119. Schmitt V, Rink L, Uciechowski P (2013) The Th17/Treg balance is disturbed during aging. Exp Gerontol 48:1379–1386PubMedCrossRefGoogle Scholar
  120. Seebart BR, Stoffel RT, Behan M (2007) Age-related changes in the serotonin 2A receptor in the hypoglossal nucleus of male and female rats. Respir Physiol Neurobiol 158:14–21PubMedPubMedCentralCrossRefGoogle Scholar
  121. Sharma G, Goodwin J (2006) Effect of aging on respiratory system physiology and immunology. Clin Interv Aging 1:253–260PubMedPubMedCentralCrossRefGoogle Scholar
  122. Shaw AC, Panda A, Joshi SR et al (2011) Dysregulation of human Toll-like receptor function in aging. Ageing Res Rev 10:346–53PubMedCrossRefGoogle Scholar
  123. Small C-L, Mccormick S, Gill N et al (2008) NK cells play a critical protective role in host defense against acute extracellular. J Immunol 180:5558–68PubMedCrossRefGoogle Scholar
  124. Starr ME, Ueda J, Yamamoto S et al (2012) The effects of aging on pulmonary oxidative damage, protein nitration and extracellular dismutase down-regulation during systemic inflammation. Free Radic Biol Med 50:371–380. doi: 10.1016/j.freeradbiomed.2010.11.013.The CrossRefGoogle Scholar
  125. Stout RD, Suttles J (2005) Immunosenescence and macrophage functional plasticity: dysregulation of macrophage function by age-associated microenvironmental changes. Immunol Rev 205:60–71PubMedPubMedCentralCrossRefGoogle Scholar
  126. Stout-Delgado HW, Vaughan SE, Shirali AC et al (2012) Impaired NLRP3 inflammasome function in elderly mice during influenza infection is rescued by treatment with nigericin. J Immunol 188:2815–24PubMedPubMedCentralCrossRefGoogle Scholar
  127. Suchyta MR, Clemmer TP, Elliott CG et al (1997) Increased mortality of older patients with acute respiratory distress syndrome. Chest 111:1334–1339PubMedCrossRefGoogle Scholar
  128. Suzuki M, Betsuyaku T, Ito Y et al (2008) Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 39:673–82PubMedCrossRefGoogle Scholar
  129. Svartengren M, Falk R, Philipson K (2005) Long-term clearance from small airways decreases with age. Eur Respir J 26:609–615PubMedCrossRefGoogle Scholar
  130. Sze MA, Dimitriu PA, Suzuki M et al (2015) The host response to the lung microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 192:438–445PubMedPubMedCentralCrossRefGoogle Scholar
  131. Tasdemir N, Lowe SW (2013) Senescent cells spread the word: non-cell autonomous propagation of cellular senescence. EMBO J 32:1975–6PubMedPubMedCentralCrossRefGoogle Scholar
  132. Tigges J, Krutmann J, Fritsche E et al (2014) The hallmarks of fibroblast ageing. Mech Ageing Dev 138:26–44PubMedCrossRefGoogle Scholar
  133. Toapanta FR, Ross TM (2009) Impaired immune responses in the lungs of aged mice following influenza infection. Respir Res. doi: 10.1186/1465-9921-10-112 PubMedPubMedCentralGoogle Scholar
  134. Torres-González E, Bueno M, Tanaka A et al (2012) Role of endoplasmic reticulum stress in age-related susceptibility to lung fibrosis. Am J Respir Cell Mol Biol 46:748–56PubMedPubMedCentralCrossRefGoogle Scholar
  135. Tsay T-B, Yang M-C, Chen P-H et al (2011) Gut flora enhance bacterial clearance in lung through toll-like receptors 4. J Biomed Sci. doi: 10.1186/1423-0127-18-68 PubMedPubMedCentralGoogle Scholar
  136. Tschudi MR, Barton M, Bersinger NA et al (1996) Effect of age on kinetics of nitric oxide release in rat aorta and pulmonary artery. J Clin Invest 98:899–905PubMedPubMedCentralCrossRefGoogle Scholar
  137. Tsuji T, Aoshiba K, Nagai A (2006) Alveolar cell senescence in patients with pulmonary emphysema. Am J Respir Crit Care Med 174:886–893PubMedCrossRefGoogle Scholar
  138. Van der Loo B, Labugger R, Skepper JN et al (2000) Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med 192:1731–44PubMedPubMedCentralCrossRefGoogle Scholar
  139. Vanaudenaerde BM, Verleden SE, Vos R et al (2011) Innate and adaptive interleukin-17-producing lymphocytes in chronic inflammatory lung disorders. Am J Respir Crit Care Med 183:977–86PubMedCrossRefGoogle Scholar
  140. Vital M, Harkema JR, Rizzo M et al (2015) Alterations of the Murine Gut Microbiome with Age and Allergic Airway Disease. J Immunol Res. doi: 10.1155/2015/892568 PubMedPubMedCentralGoogle Scholar
  141. Vrijheid M (2014) The exposome: a new paradigm to study the impact of environment on health. Thorax 69:876–8PubMedCrossRefGoogle Scholar
  142. Walski M, Pokorski M, Antosiewicz J et al (2009) Pulmonary surfactant: ultrastructural features and putative mechanisms of aging. J Physiol Pharmacol 60:121–125PubMedGoogle Scholar
  143. Weiskopf D, Weinberger B, Grubeck-Loebenstein B (2009) The aging of the immune system. Transpl Int 22:1041–50PubMedCrossRefGoogle Scholar
  144. Xu J, Gonzalez ET, Iyer SS et al (2009) Use of senescence-accelerated mouse model in bleomycin-induced lung injury suggests that bone marrow-derived cells can alter the outcome of lung injury in aged mice. J Gerontol A 64:731–739CrossRefGoogle Scholar
  145. Yanai H, Shteinberg A, Porat Z et al (2015) Cellular senescence-like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients. Aging (iIpact) 7:664–672CrossRefGoogle Scholar
  146. Yang S-R, Park J-R, Kang K-S (2015) Reactive oxygen species in mesenchymal stem cell aging: implication to lung diseases. Oxidative Med Cell Longev. doi: 10.1155/2015/486263 Google Scholar
  147. Yende S, Tuomanen EI, Wunderink R et al (2005) Preinfection systemic inflammatory markers and risk of hospitalization due to pneumonia. Am J Respir Crit Care Med 172:1440–6PubMedPubMedCentralCrossRefGoogle Scholar
  148. Yoshida T, Tuder R (2007) Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol Rev 87:1047–1082PubMedCrossRefGoogle Scholar
  149. Zacca ER, Crespo MI, Acland RP et al (2015) Aging Impairs the ability of conventional dendritic cells to cross-prime CD8+ T cells upon stimulation with a TLR7 Ligand. PLoS ONE. doi: 10.1371/journal.pone.0140672 PubMedPubMedCentralGoogle Scholar
  150. Zaccagnini G, Gaetano C, Della Pietra L et al (2005) Telomerase mediates vascular endothelial growth factor-dependent responsiveness in a rat model of hind limb ischemia. J Biol Chem 280:14790–14798PubMedCrossRefGoogle Scholar
  151. Zemans RL, Colgan SP, Downey GP (2009) Transepithelial migration of neutrophils: Mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol 40:519–535PubMedCrossRefGoogle Scholar
  152. Zhao J, Zhao J, Legge K, Perlman S (2011) Age-related increases in PGD2 expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Invest 121:4921–30PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christina Brandenberger
    • 1
    • 2
    • 3
  • Christian Mühlfeld
    • 1
    • 2
    • 3
  1. 1.Institute of Functional and Applied AnatomyHannover Medical SchoolHannoverGermany
  2. 2.Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy)HannoverGermany
  3. 3.Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)Member of the German Center for Lung Research (DZL)HannoverGermany

Personalised recommendations