Advertisement

Cell and Tissue Research

, Volume 366, Issue 3, pp 679–692 | Cite as

Characterisation and vascular expression of nitric oxide synthase 3 in amphibians

  • Melissa S. Cameron
  • Sofie Trajanovska
  • Leonard G. Forgan
  • John A. Donald
Regular Article

Abstract

In mammals, nitric oxide (NO) produced by nitric oxide synthase 3 (NOS3) localised in vascular endothelial cells is an important vasodilator but the presence of NOS3 in the endothelium of amphibians has been concluded to be absent, based on physiological studies. In this study, a nos3 cDNA was sequenced from the toad, Rhinella marina. The open reading frame of R. marina nos3 encoded an 1170 amino acid protein that showed 81 % sequence identity to the recently cloned Xenopus tropicalis nos3. Rhinella marina nos3 mRNA was expressed in a range of tissues and in the dorsal aorta and pulmonary, mesenteric, iliac and gastrocnemius arteries. Furthermore, nos3 mRNA was expressed in the aorta of Xenopus laevis and X. tropicalis. Quantitative real-time PCR showed that removal of the endothelium of the lateral aorta of R. marina significantly reduced the expression of nos3 mRNA compared to control aorta with the endothelium intact. However, in situ hybridisation was not able to detect any nos3 mRNA in the dorsal aorta of R. marina. Immunohistochemistry using a homologous R. marina NOS3 antibody showed immunoreactivity (IR) within the basal region of many endothelial cells of the dorsal aorta and iliac artery. NOS3-IR was also observed in the proximal tubules and collecting ducts of the kidney but not within the capillaries of the glomeruli. This is the first study to demonstrate that vascular endothelial cells of an amphibian express NOS3.

Keywords

Nitric oxide synthase Nitric oxide Endothelium Amphibian Rhinella 

Notes

Acknowledgments

MC would like to personally thank Dr. Tara Speranza for the use of her microscope at The University of Sydney and the authors thank Professor Yoshio Takei, Associate Professor Susumu Hyodo, Dr. Marty Wong, Dr. Bryony McNeill and Dr. Makoto Kusakabe for their assistance with the study. We kindly thank the reviewers for their comments, which helped improve the manuscript.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

441_2016_2479_MOESM1_ESM.pdf (75 kb)
ESM 1 (PDF 74 kb)
441_2016_2479_MOESM2_ESM.pdf (218 kb)
ESM 2 (PDF 217 kb)
441_2016_2479_MOESM3_ESM.pdf (52 kb)
ESM 3 (PDF 51 kb)

References

  1. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andreakis N, D’Aniello S, Albalat R, Patti FP, Garcia-Fernandez J, Procaccini G, Sordino P, Palumbo A (2011) Evolution of the nitric oxide synthase family in metazoans. Mol Biol Evol 28:163–179CrossRefPubMedGoogle Scholar
  3. Biwer LA, Taddeo EP, Kenwood BM, Hoehn KL, Straub AC, Isakson BE (2016) Two functionally distinct pools of eNOS in endothelium are facilitated by myoendothelial junction lipid composition. Biochim Biophys Acta 1861:671–679CrossRefPubMedGoogle Scholar
  4. Broughton BRS, Donald JA (2002) Nitric oxide regulation of the central aortae of the toad Bufo marinus occurs independently of the endothelium. J Exp Biol 205:3093–3100PubMedGoogle Scholar
  5. Broughton BRS, Donald JA (2005) Nitric oxide control of large veins in the toad, Bufo marinus. J Comp Physiol B 175:157–166CrossRefPubMedGoogle Scholar
  6. Broughton BRS, Donald JA (2007) Dual mechanisms for nitric oxide control of large arteries in the estuarine crocodile, Crocodylus porosus. J Exp Biol 210:129–137CrossRefPubMedGoogle Scholar
  7. Daff S (2010) NO synthase: structures and mechanisms. Nitric Oxide 23:1–11CrossRefPubMedGoogle Scholar
  8. Donald JA, Broughton BRS (2005) Nitric oxide control of lower vertebrate blood vessels by vasomotor nerves. Comp Biochem Physiol A 142:188–197CrossRefGoogle Scholar
  9. Donald JA, Forgan LG, Cameron MS (2015) The evolution of nitric oxide signalling in vertebrate blood vessels. J Comp Physiol B 185:153–171CrossRefPubMedGoogle Scholar
  10. Dudzinski DM, Igarishe J, Greif D, Michel T (2006) The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol 46:235–276CrossRefPubMedGoogle Scholar
  11. García-Cardeña G, Oh P, Liu J, Schnitzer JE, Sessa WC (1996) Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signalling. Proc Natl Acad Sci U S A 93:6448–6453CrossRefPubMedPubMedCentralGoogle Scholar
  12. González-Domenech CM, Muňoz-Chápuli R (2010) Molecular evolution of nitric oxide synthases in metazoans. Comp Biochem Physiol D 5:295–301Google Scholar
  13. Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190Google Scholar
  14. Hasegawa K, Nishimura H (1991) Humoral factor mediates acetylcholine-induced endothelium-dependent relaxation of chicken aorta. Gen Comp Endocrinol 84:164–169CrossRefPubMedGoogle Scholar
  15. Hedrick MS, Hillman SS, Drewes RC, Withers PC (2013) Lymphatic regulation in nonmammalian vertebrates. J Appl Physiol 115:297–308CrossRefPubMedGoogle Scholar
  16. Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the western clawed frog Xenopus tropicalis. Science 328:633–636Google Scholar
  17. Hillman SS, Hedrick MS, Kohl ZF (2014) Net cardiac shunts in anuran amphibians: physiology or physics? J Exp Biol 217:2844–2847CrossRefPubMedGoogle Scholar
  18. Jarrett C, Lekic M, Smith CL, Pusec CM, Sweazea KL (2013) Mechanisms of acetylcholine-mediated vasodilation in systemic arteries from mourning doves (Zenaida macroura). J Comp Physiol B 183:959–963CrossRefPubMedGoogle Scholar
  19. Jennings BL, Donald JA (2008) Neurally-derived nitric oxide regulates vascular tone in pulmonary and cutaneous arteries of the toad, Bufo marinus. Am J Physiol Regul Integr Comp Physiol 295:R1640–R1646CrossRefPubMedGoogle Scholar
  20. Jennings BL, Donald JA (2010) Mechanisms of nitric-oxide mediated, neurogenic vasodilation in mesenteric resistance arteries of toad Bufo marinus. Am J Physiol Regul Integr Comp Physiol 298:R767–R775CrossRefPubMedGoogle Scholar
  21. Jennings BL, Broughton BRS, Donald JA (2004) Nitric oxide control of the dorsal aorta and the intestinal vein of the Australian short-finned eel, Anguilla australis. J Exp Biol 207:1295–1303CrossRefPubMedGoogle Scholar
  22. Kågström J, Holmgren S (1997) VIP-induced relaxation of small arteries of the rainbow trout, Oncorhynchus mykiss, involves prostaglandin synthesis but not nitric oxide. J Auton Nerv Syst 63:68–76CrossRefPubMedGoogle Scholar
  23. Karpinka JB, Fortriede JD, Burns KA, James-Zorn C, Ponferrada VG, Lee J, Karimi K, Zorn AM, Vize PD (2015) Xenbase, the Xenopus model organism database; new virtualised system, data types and genomes. Nucleic Acids Res 43:D756–763CrossRefPubMedGoogle Scholar
  24. le Noble FAC, Ruijtenbeek K, Gommers S, de May JGR, Blanco CE (2000) Contractile and relaxing reactivity in carotid and femoral arteries of chicken embryos. Am J Physiol Heart Circ Physiol 278:H1261–1268PubMedGoogle Scholar
  25. Leo MDM, Siddegowda YKB, Kumar D, Tandan SK, Sastry KVH, Prakash VR, Mishra SK (2008) Role of nitric oxide and carbon monoxide in Nω-Nitro-L-arginine methyl ester-resistant acetylcholine-induced relaxation in chicken carotid artery. Eur J Pharmacol 596:111–117CrossRefPubMedGoogle Scholar
  26. Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229–232CrossRefPubMedGoogle Scholar
  27. Liu VW, Huang PL (2008) Cardiovascular roles of nitric oxide: a review of insights from nitric oxide synthase gene disrupted mice. Cardiovasc Res 77:19–29PubMedPubMedCentralGoogle Scholar
  28. Martinez-Lemus LA, Hester RK, Becker EJ, Jeffrey JS, Odom TW (1999) Pulmonary artery endothelium-dependent vasodilation is impaired in a chicken model on pulmonary hypertension. Am J Physiol 277:R190–R197PubMedGoogle Scholar
  29. Moncada S, Higgs EA (2006) The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol 147:S193–201CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mόnica FZ, Rojas-Moscoso J, Porto M, Schenka AA, Antunes E, Cogo JC, De Nucci G (2012) Immunohistochemical and functional characterisation of nitric oxide signalling pathway in isolated aorta from Crotalus durissus terrificus. Comp Biochem Physiol C 155:433–439Google Scholar
  31. Olson KR, Donald JA (2009) Nervous control of circulation - the role of gasotransmitters, NO, CO, and H2S. Acta Histochem 111:244–256CrossRefPubMedGoogle Scholar
  32. Olson KR, Villa J (1991) Evidence against nonprostanoid endothelium-derived relaxing factor(s) in trout vessels. Am J Physiol Regul Integr Comp Physiol 260:R925–R933Google Scholar
  33. Ortiz PA, Garvin JL (2003) Cardiovascular and renal control in NOS-deficient mouse models. Am J Physiol Regul Integr Comp Physiol 284:R628–R638CrossRefPubMedGoogle Scholar
  34. Park KH, Kim K-H, Choi M-S, Choi S-H, Yoon J-M, Kim Y-G (2000) Cyclooxygenase derived products, rather than nitric oxide, are endothelium-derived relaxing factor(s) in the ventral aorta of carp (Cyprinus carpio). Comp Biochem Physiol A 127:89–98CrossRefGoogle Scholar
  35. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signalling domains. Proc Natl Acad Sci U S A 95:5857–5864CrossRefPubMedPubMedCentralGoogle Scholar
  36. Schwerte T, Printz E, Fritsche R (2002) Vascular control in larval Xenopus laevis: the role of endothelial-derived factors. J Exp Biol 205:225–232PubMedGoogle Scholar
  37. Skovgaard N, Galli G, Abe A, Taylor EW, Wang T (2005) The role of nitric oxide in regulation of the cardiovascular system in reptiles. Comp Biochem Physiol A 142:205–214CrossRefGoogle Scholar
  38. Sun YB, Xiong ZJ, Xiang XY, Liu SP, Zhou WW, Tu XL, Zhong L, Wang L, Wu DD, Zhang BL, Zhu CL, Yang MM, Chen HM, Li F, Zhou L, Feng SH, Huang C, Zhang GJ, Irwin D, Hillis DM, Murphy RW, Yang HM, Che J, Wang J, Zhang YP (2015) Whole-genome sequence of the Tibetan frog, Nanorana parkeri, and the comparative evolution of tetrapod genomes. Proc Natl Acad Sci U S A 112:E1257–1262CrossRefPubMedPubMedCentralGoogle Scholar
  39. Takabe S, Teranishi K, Takaki S, Kusakabe M, Hirose S, Kaneko T, Hyodo S (2012) Morphological and functional characterization of a novel Na+/K+-ATPase-immunoreactive, follicle-like structure on the gill septum of Japanese banded houndshark, Triakis scyllium. Cell Tissue Res 348:141–153CrossRefPubMedGoogle Scholar
  40. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2759CrossRefPubMedPubMedCentralGoogle Scholar
  41. Trajanovska S, Donald JA (2011) Endothelial nitric oxide synthase in the amphibian, Xenopus tropicalis. Comp Biochem Physiol B 158:274–281CrossRefPubMedGoogle Scholar
  42. Uffe H, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the western clawed frog Xenopus tropicalis. Science 328:633–636CrossRefGoogle Scholar
  43. Wang J, Wang X, Xiang R, Sun W (2002) Effect of L-NAME on pulmonary arterial pressure, plasma nitric oxide and pulmonary hypertension syndrome morbidity in broilers. Br Poult Sci 43:615–620CrossRefPubMedGoogle Scholar
  44. Wilcox JN, Subramanian RR, Sundell CL, Tracey WR, Pollock JS, Harrison DG, Marsden PA (1997) Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol 17:2479–88CrossRefPubMedGoogle Scholar
  45. Yokomori H, Oda M, Yoshimura K, Nomura M, Wakabayashi G, Kitajima M, Ishii H (2003) Elevated expression of caveolin-1 at protein and mRNA level in human cirrhotic liver: relation with nitric oxide. J Gastroenterol 38:854–60CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Melissa S. Cameron
    • 1
  • Sofie Trajanovska
    • 1
  • Leonard G. Forgan
    • 1
  • John A. Donald
    • 1
  1. 1.Geelong, Australia. School of Life and Environmental SciencesDeakin UniversityWaurn PondsAustralia

Personalised recommendations